Longitudinal Analysis of Circulating Markers of #Bone Turnover Across Multiple Decades in #Osteoporotic Women

The objective of this study was to analyze changes in serum markers of bone turnover across multiple decades in osteoporotic women compared with nonosteoporotic controls, to determine their utility as potential predictors for osteoporosis. Early prediction of those at risk for osteoporosis can enable early intervention before the irreversible loss of critical bone mass.

Serum samples were obtained from 20 women given the diagnosis of osteoporosis after age 46 years and 20 age-matched women with normal bone mineral density from 4 time points in their life (ages 25–31, 32–38, 39–45, and 46–60 years). Serum levels of bone turnover markers (propeptide of type I collagen, parathyroid hormone, bone-specific alkaline phosphatase, osteocalcin, C-terminal telopeptide of type I collagen, sclerostin, osteoprotegerin, osteopontin, and 25-OH vitamin D) were measured using commercially available arrays and kits. We used logistic regression to assess these individual serum markers as potential predictors of osteoporosis, and mixed-effects modeling to assess the change in bone turnover markers between osteoporotic and control groups over time, then performed fivefold cross-validation to assess the classification ability of the models.

Markers of bone turnover, bone-specific alkaline phosphatase, C-terminal telopeptide of type I collagen, sclerostin, and osteocalcin were all independent predictors at multiple time points; osteopontin was an independent predictor in the 39- to 45-year age group. Receiver operating characteristic analyses demonstrated moderately strong classification ability at all time points. Sclerostin levels among groups diverged over time and were higher in the control group than the osteoporotic group, with significant differences observed at time points 3 and 4.

Serum markers of bone turnover may be used to estimate the likelihood of osteoporosis development in individuals over time. Although prospective validation is necessary before recommending widespread clinical use, this information may be used to identify patients at risk for developing low bone mineral density long before traditional screening would ostensibly take place