High-#Fiber, Whole-Food Dietary Intervention Alters the Human Gut #Microbiome but Not Fecal Short-Chain Fatty Acids

Dietary shifts can have a direct impact on the gut microbiome by preferentially selecting for microbes capable of utilizing the various dietary nutrients. The intake of dietary fiber has decreased precipitously in the last century, while consumption of processed foods has increased. Fiber, or microbiota-accessible carbohydrates (MACs), persist in the digestive tract and can be metabolized by specific bacteria encoding fiber-degrading enzymes.

The digestion of MACs results in the accumulation of short-chain fatty acids (SCFAs) and other metabolic by-products that are critical to human health. Here, we implemented a 2-week dietary fiber intervention aiming for 40 to 50 g of fiber per day within the context of a course-based undergraduate research experience (CURE) (n = 20). By coupling shotgun metagenomic sequencing and targeted gas chromatography-mass spectrometry (GC-MS), we found that the dietary intervention significantly altered the composition of individual gut microbiomes, accounting for 8.3% of the longitudinal variability within subjects.

Notably, microbial taxa that increased in relative abundance as a result of the diet change included known MAC degraders (i.e., Bifidobacterium and Lactobacillus). We further assessed the genetic diversity within Bifidobacterium, assayed by amplification of the groEL gene. Concomitant with microbial composition changes, we show an increase in the abundance of genes involved in inositol degradation.

Despite these changes in gut microbiome composition, we did not detect a consistent shift in SCFA abundance. Collectively, our results demonstrate that on a short-term timescale of 2 weeks, increased fiber intake can induce compositional changes of the gut microbiome, including an increase in MAC-degrading bacteria.

https://bit.ly/3mfTYes