Task-Dependent Functional and Effective #Connectivity during Conceptual Processing

Conceptual knowledge is central to cognition. Previous neuroimaging research indicates that conceptual processing involves both modality-specific perceptual-motor areas and multimodal convergence zones. For example, our previous functional magnetic resonance imaging (fMRI) study revealed that both modality-specific and multimodal regions respond to sound and action features of concepts in a task-dependent fashion (Kuhnke P, Kiefer M, Hartwigsen G. 2020b. Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing. Cereb Cortex. 30:3938–3959.).

However, it remains unknown whether and how modality-specific and multimodal areas interact during conceptual tasks. Here, we asked 1) whether multimodal and modality-specific areas are functionally coupled during conceptual processing, 2) whether their coupling depends on the task, 3) whether information flows top-down, bottom-up or both, and 4) whether their coupling is behaviorally relevant. We combined psychophysiological interaction analyses with dynamic causal modeling on the fMRI data of our previous study. We found that functional coupling between multimodal and modality-specific areas strongly depended on the task, involved both top-down and bottom-up information flow, and predicted conceptually guided behavior.

Notably, we also found coupling between different modality-specific areas and between different multimodal areas. These results suggest that functional coupling in the conceptual system is extensive, reciprocal, task-dependent, and behaviorally relevant. We propose a new model of the conceptual system that incorporates task-dependent functional interactions between modality-specific and multimodal areas.