Effective prompt design for large language models in clinical #practice

Large language models ( ) have emerged as transformative healthcare tools for clinical documentation, diagnostic reasoning, and medical education. However, effective utilization requires understanding prompt engineering principles—the strategic design of inputs to optimize performance while mitigating hallucination, bias, and outdated information.MethodsThis narrative review synthesizes evidence from a structured PubMed search through December 2025 using… Continue reading Effective prompt design for large language models in clinical #practice

Comparison of verbal autopsy using a large #language model to biologically confirmed causes of death for #malaria and other communicable diseases among children in six sub-Saharan African countries

Malaria, a preventable parasitic disease, causes most child deaths in sub-Saharan Africa (SSA). Reliable cause-of-death data are essential to evaluate progress toward the national and global malaria control goals. However, civil registration and vital statistics are often weak and incomplete in many low- and middle-income countries. In such circumstances, verbal autopsy (VA) provides an alternative… Continue reading Comparison of verbal autopsy using a large #language model to biologically confirmed causes of death for #malaria and other communicable diseases among children in six sub-Saharan African countries

Sociodemographic #biases in medical decision making by large language models

Large language models (LLMs) show promise in healthcare, but concerns remain that they may produce medically unjustified clinical care recommendations reflecting the influence of patients’ sociodemographic characteristics. We evaluated nine LLMs, analyzing over 1.7 million model-generated outputs from 1,000 emergency department cases (500 real and 500 synthetic). Each case was presented in 32 variations (31… Continue reading Sociodemographic #biases in medical decision making by large language models