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Molecular routes to metastatic dissemination are critical determinants
of aggressive cancers. Throughin vivo CRISPR-Cas9 genome editing,

we generated somatic mosaic genetically engineered models that
faithfully recapitulate metastatic renal tumors. Disruption of 9p21
locusis an evolutionary driver to systemic disease through the rapid
acquisition of complex karyotypes in cancer cells. Cross-species analysis
revealed that recurrent patterns of copy number variations, including
21qloss and dysregulation of the interferon pathway, are major drivers
of metastatic potential. Invitro and in vivo genomic engineering,
leveraging loss-of-function studies, along with a model of partial trisomy
of chromosome 21q, demonstrated a dosage-dependent effect of the
interferonreceptor genes cluster as an adaptive mechanism to deleterious
chromosomalinstability in metastatic progression. This work provides
critical knowledge on drivers of renal cell carcinoma progression and
defines the primary role of interferon signaling in constraining the
propagation of aneuploid clones in cancer evolution.

Metastatic progression of solid tumors is the main cause of deathin  is still elusive>. Among different tumor types, metastatic renal cell
patients with cancer’. Next-generation sequencing (NGS) studies have  carcinoma (RCC) represents an excellent cancer model to study therole
provided detailed annotation of the genomic landscape of metastatic  of specific genomic events in tumor progression and to functionally
cancers; however, our understanding of the role of specific genomic  establish a genotype-phenotype evolutionary map>*. RCCs are rela-
eventsindriving the emergence of clones with metastaticcompetencies  tivelyindolent tumors that can be effectively treated with conservative
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strategies; however, up to a third of patients present with or progress
to an aggressive form of the disease characterized by widespread
systemic dissemination®. Understanding pathophysiological drivers
leading to aggressive forms of RCC and metastatic disseminationis, for
this reason, of criticalimportance’. NGS analysis of advanced RCC and
phylogenetic reconstruction of tumor evolution through multiregional
sequencing have identified genetic lesions and patterns associated
with the emergence of metastatic lineages, including the disrup-
tion of epigenetic modulators (SETD2, BAPI), regulators of cell-cycle
checkpoints (TP53, CDKN2A/B) and cell fate (VF2, FATI), along with the
presence of multiple clonal drivers and complex karyotypic features
(loss of 14q and 9p)** " (Extended Data Fig. 1a-1 and Supplementary
Table1), providing an excellent model to functionally dissect genome-
phenome associations and understand whether these events are func-
tional metastatic drivers or rather an epiphenomenon of stochastic
cancer evolution®. We, therefore, set to generate high-throughput
invivo and ex vivo platforms of somatic mosaic genetically engineered
mouse models (SM-GEMM) leveraging CRISPR-Cas9-based genome
editing, to functionally capture the evolutionary patterns and clinical
characteristics of metastatic RCC. Thisapproach allowed us to explore
specific genomic rearrangements and their influence on the acquisi-
tion of metastatic competencies. Genomic annotation of SM-GEMM
revealed common patterns of alterations to metastatic disseminationin
human and murine models, confirmed through cross-species analysis
of recurrent genomic features. Our study functionally proves the role
of evolutionary conserved patterns of aneuploidy, acquired through
chromosomal instability (CIN), in driving malignant progression of
renal cancer. We discovered that renal tumors converge on the acquisi-
tionof a‘CIN-tolerant’ phenotype through disruption of the interferon
signaling pathway. These findings provide critical insights on common
evolutionary conserved paths leading to metastatic progression in
otherwise indolent tumors.

Results

9p loss drives acquisition of metastatic competency in RCC

To investigate acquisition of metastatic potential in RCC, we engi-
neered combinations of tissue-specific somatic knockouts of murine
orthologs of the most common tumor suppressor genes (TSGs) driving
RCC progression (Vhl, Nf2,Setd2, Bap1 and Trp53), viarenal subcapsu-
lar administration of adeno-associated viral (AAV) particles carrying
single-guide RNAs (sgRNAs) targeting the renal epithelium of mice
expressing a tissue-specific conditional Cas9 allele and fluorescent
reporters for tracing purposes (Fig. 1a-d). Combinations of these com-
mon TSGs consistently yielded indolent tumors, characterized by low
penetrance, long latency and limited invasive potential with histo-
pathological features of well-differentiated carcinomas, suggesting

thatsomaticinactivation of the aforementioned genes is not sufficient
to promote aggressive disease and metastatic spread (Fig. 1e,f). We,
therefore, designed a pair of sgRNAs targeting the cell-cycle regula-
tor genes Cdkn2a and Cdkn2b on murine chromosome 4 syntenic to
human 9p21.3 (4¢***), arecurrent chromosomal aberration associated
with metastatic progression in patients affected by RCC?. Strikingly,
somatic genetic manipulation of the 4¢°”? locus in combination with
Nf2 and Setd2 knockouts or Vhl and Setd2 knockouts resulted in the
emergence of rapidly fatal tumors with aprominent tendency for wide-
spread systemic dissemination and extensive sarcomatoid differentia-
tion (sarcomatoid Renal Cell Carcinoma, sRCC), as assessed by clinical
and histopathological analysis (Figs. 1g-k and 2a,b). These features
are consistent with aggressive RCC and closely mirror the patterns of
metastatic dissemination of patients affected by advanced forms of
the disease™ (Fig. 2¢,d).

Convergent genomic evolution of RCC

To dissect molecular drivers of aggressive murine RCC, we set to per-
form genomic characterization through multiregional whole-exome
sequencing (WES) and, in selected cases, whole-genome sequencing
(WGS) onatotal of 100 samples (50 primary lesions, 21 metastatic sites,
10 tumor-derived cell lines and 19 matched healthy controls) from 19
different SM-GEMMs. We focused our genomic analysis on Nf2-Setd2-
4¢°P?-driven models (Supplementary Table1). In vivo somatic mosaic
engineering revealed a highly efficient in vivo editing, allowing for
the detection of 4¢°** disruption as a consequence of homozygous
indels or deletions spanning Cdkn2a and Cdkn2b genes (Extended Data
Fig. 2a-d and Supplementary Table 1). Additionally, we investigated
the mutational profiles of murine tumors, revealing remarkable simi-
larities with human RCC, including a relatively low mutational burden
(0.34 somatic, exonic mutations; variant allele frequency (VAF) > 0.1
per Mb) and highly consistent repertoires of mutational signatures
at both primary and metastatic sites (Extended Data Fig. 3a-c).
Specifically, arelative prevalence of Signature 1 (C>T) consisting of
spontaneous cytidine deamination is suggestive of cross-species
convergent evolution in the mutational processes emerging in RCC".
We next performed copy number variation (CNV) analysis of primary
tumors and metastatic sites; strikingly, we discovered the emergence
of highly recurrent CNV events, such as loss of chromosomes 12 and
16 and gain of chromosome 5 (Fig. 2e and Extended Data Fig. 4a,b)
Cross-species genomic analysis demonstrated remarkable similarities
between mouse and human RCCs, as evidenced by comparative exami-
nation of syntenic genomic regions (Fig. 2f). To further characterize
genomic determinants of metastatic RCC, and specifically the timing
of emergence of these specific karyotypes, we inferred tumor ploidy
through analysis of heterozygous single-nucleotide polymorphisms

Fig.1|SM-GEMM of RCC. a, Schematic showing the SM-GEMM design. Cancer-
specificloss-of-function mutations are introduced via intraparenchymal delivery
of AAV particles carrying specific sgRNA combinations. b, Representative E14
Pax8“* -R26"-""* embryos. The activation of the fluorescent reporter TdT can
bereadily appreciated in the developing hindbrain, notochord and kidney.n =5
embryos. ¢, Schematic showing the AAV-based tracing system carrying a
FLEx-GFP-reported sequence. IHC analysis on representative FFPE sections
stained with a GFP-specific antibody. n = S5mice. d, T7-endonuclease assay
validating sgRNA for Trp53(a), Nf2 (b), Bapl (c), Setd2 (d), Cdkn2a (e), Cdkn2b
(f) and negative controls (*). Images representative of n = 3independent
experiments. e, Pathological characterization of murine RCC obtained through
somatic mosaic knockout of Nf2and Setd2. (I) Gross specimens collected

8 months posttransduction; (I1) axial T2 MRI scan displaying a small cortical
lesion 8 months posttransduction; and (Ill) and (IV) hematoxylin and eosin
(H&E)-stained sections from well-differentiated tumors collected at 6 and

8 months posttransduction, respectively. f, Kaplan-Meier analysis of cancer-
specific survival of mice affected by Nf2KO-driven tumors. NB: Nf2*°-Bap1*°
(n=40mice); NS: N2“°-Setd2"° (n = 20 mice); NBS: Nf2¥°-Setd2"°- Trp53"° (n = 24
mice). P=0.23,0.054,0.12. g, Upper panel, representative coronal T2 MRIscan

at 3 months posttransduction in Nf2X0-Setd2*°-4¢°** mice. Red arrows, primary
tumor mass; red dashed lines, lung metastasis. Bottom panels, representative
luminescence scans of mouse organs. 1, primary tumor; 2, lung metastasis; 3,
liver metastasis. Images representative of n = 2 experiments. h, Characterization
of Nf2¥°-driven murine tumors upon genetic targeting of the murine locus
syntenic to human 9p21.3 (4g°*%): representative macroscopic images (top
panels), H&E, IHC and IF analysis (lower panels). Images representative of
n=2experiments.i, Kaplan-Meier analysis of cancer-specific survival of mice
affected by VAI°-driven tumors with (n = 20 mice) or without (n =20 mice)
4g”*loss, P=1.18 x 1078, j,k, Characterization of VAl*°-driven murine tumors
upon genetic targeting of 4G locus: representative macroscopic images (j),
H&E and IHC analysis of specific clear cell RCC markers (PAX8 and CD31) are
shown (k). PT, primary tumor; LuM, lung metastasis; LiM, liver metastasis; PaM,
pancreatic metastasis; MeM, mesenteric metastasis; DiM, diaphragm metastasis.
Images representative of n = 2 experiments. NS, not significant; ****P < 0.0001
by log-rank (Mantel-Cox) test. Scale bar, 200 pm. BF, brightfield; E, embryonic
day; FFPE, formalin-fixed paraffin-embedded; IF,immunofluorescence; MRI,
magnetic resonance imaging; RLU, renilla luciferase.
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(SNPs) and identified that whole-genome duplication (WGD) events
precede the emergence of specific chromosomal alterations (Extended
Data Fig. 4c-h). These observations along with a minimal presence
of truncal single-nucleotide variant (SNV) events are consistent with
the early selection and fixation of abnormal karyotypes and the rapid
expansion of clones with high fitness*' (Fig. 2g,h and Extended Data
Fig. 5a).

The emergence of complex karyotypes through CIN has been
uniformly associated with worse prognosis and poor response to ther-
apy across cancer types; however, there is limited functional proof of
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whether specific alterations are conductive to metastatic competence
orrather an epiphenomenon®”. Genomic characterization of murine
tumors identified two distinct genomic clusters, characterized by
recurrent patterns of CNVs and arelatively unstable genome (Cluster
no.1) or few whole-chromosome alterations and inconsistent patterns
of CNVs (Cluster no. 2). Cytological analysis of Cluster no.1and Cluster
no. 2 tumors revealed, in the former, increased aberrant mitosis and
presence of micronuclei resulting in the engagement of the cGAS/
STING pathway through cytoplasmic DNA accumulation (Fig. 2i-k)s.
Phenotypic analysis demonstrated that tumor explants established
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Fig.2|CINis afeature of aggressive metastatic RCC. a, Kaplan-Meier survival
analysis of Nf2°-driven tumors with (n = 99 mice) and without (n = 84 mice)
4g°"?-targeting sgRNAs. P < 1x 107, b, Box and whiskers plot showing metastatic
burden of 4g°"? (n = 69 mice) and 4¢** (n = 15 mice) models; data are presented
asmean £s.d.,P=1.16 x10°°. ¢,d, Cross-species comparison of site-specific
metastasis (c) and disease burden (d); Mm, Mus musculus, n =79 mice; Hs, Homo
sapiens. e, Summary heatmap showing WES results (n = 81 samples derived from
19 mice) (Supplementary Table 1). f, Circos plot of the human to mouse synteny
map for chromosome regions significantly altered in SM-GEMM. Statistics derived
fromn=81samples. g, Bar charts showing the percentage of private and truncal
somatic events at primary (upper panel) and metastatic sites (bottom panel).

h, Density plots displaying the VAF of observed somatic mutations. i, Histological
high-power field magnification of normal anaphase (top left) and aberrant
metaphases (top right) with IFs for cGAS (red) and DAPI (blue) (middle and bottom
panels). Arrows indicate micronuclei. Scale bar, 30 um. Images representative

of n=3 experiments. j,k, Box and whiskers plots showing percentages of tumor
cells with aberrant mitosis (j), data are represented as median values, minimum
and maximum (26.6, 20, 56.6 for Cluster no.2 and 70, 88 and 95 for Cluster no.1,
respectively); and with micronuclei (k), data are represented as median values,
minimum and maximum (3,1, 6 for Cluster no. 2 and 8.5, 4 and 12 for Cluster no.

1, respectively). n = 8 tumors per condition (j), n =12 tumors per condition (k);
P=1.80x107(j)and 1.34 x 107° (k). 1, m, Kaplan-Meier survival analysis (I) and
metastatic lesions count (m) in Cluster no.1and Cluster no.2 RCC GEM models
transplants; P=3.08 x10™'° (I, n = 57 mice) and <1 x 10 (m, n =109 mice). n, Violin
plot showing aneuploidy score with 9p status and WGD (9p~, n = 212 tumors; 9p*',
n=710 tumors); P<1x10and P=3.07 x 102 0, Bar chart showing the prevalence
of WGD in9p**and 9p™ cases in TCGA and MSKCC datasets (n = 922 tumors);
P<1x1075.%P<0.05,***P < 0.0001 by log-rank (Mantel-Cox) test (a,l), two-tailed
t-test (b,j,k,m), two-tailed Mann-Whitney test (n) and two-sided Fisher’s exact test
(0).Lu, lung; M, mouse; RDR, read depth ratio; Sp, splanchnic.

from Cluster no.1primary tumors are characterized by an aggressive
clinical course with higher penetrance, shorter survival and a signifi-
cantincrease in metastatic burden (Fig. 21, m). To further corroborate
the association between complex karyotypes and aggressive RCC, we

analyzed genomic and clinical data from The Cancer Genome Atlas
(TCGA) RCC cohort, showing that 9p21 loss tumors are characterized
by high fraction of copy number altered (f(CNA) genome and presence
of WGD (Fig. 2n,0). Altogether, these data show that the acquisition of
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Fig.3|Chromosome 16q loss is permissive for the emergence of aggressive
tumors. a, Schematic showing GEM model design for GEKOs generation (left)
and experimental timeline (right) (dark purple, Nf2“°-Setd2*°-4¢°"*""; purple,
Nf2%°-Setd2*°; pink, empty vector). b, Bar graph displaying distribution of cells
among 18 different clusters for the 3 different experimental groups. ¢, Three-
dimensional distribution of the 87,718 GEKO-derived cells; the color scale bar
isbased on pseudotime values. d, Distribution plots of individual samples
according to pseudotime values (left panel) and three-dimensional distribution
along the pseudotime of the three different experimental groups (right panels).

e, Three-dimensional distribution across the pseudotime of cells with euploid
16q (Nf2"°-Setd2"°-4¢*"*" 16g***“, pink) and with 16~ (Nf2"°-Setd2"°-4q***" 164",
green).n = 87,718 cells. f, Violin plot showing pseudotime distributions in the
four different genomic groups; P <1x107. g, Kaplan-Meier survival analysis

of CB17SC-F SCID mice inoculated orthotopically in the kidney with SM-GEMM-
derived celllines, 16¢™ (n = 10 mice) or 16¢°"° (n =10 mice); P=3.23 x10°°.
***+p < (0.0001 by two-tailed Mann-Whitney test (f) and by log-rank (Mantel-Cox)
test (g).

genomicinstability is pervasive in 9p21-altered RCCs, contributing to
the emergence of aggressive tumor cell populations.

Functional heterogeneity of aggressive RCC

To dissect molecular pathways involved in RCC progression follow-
ing4¢°* loss, we generated genetically engineered kidney organoids
(GEKOs) carrying somatic knockouts of Nf2 and Setd2 TSGs along with
the inactivation of Cdkn2a/b on chromosome 4¢°*% and performed
single-cell RNA-sequencing (scRNA-seq) analysis, aiming to provide
a dynamic multi-dimensional landscape of 9p deletion in RCC evolu-
tion (Fig. 3a and Extended Data Fig. 6a). After quality filtering, 87,718
cells were retrieved from 13 samples clustering among 18 different
subtypes. Computational deconvolution of inferred trajectories of
GEKO cells revealed multiple routes of transcriptomic heterogeneity
upon loss of 4¢°" across two independent algorithms'?° (Fig. 3b,c,

Extended Data Fig. 6b and Methods). In spite of generally low levels
of genetic heterogeneity and early selection of malignant clones with
high fitness and complex karyotypes, as observed from genomic
analysis, scRNA-seq data suggest that CIN favors the emergence of
transcriptomic variability in the context of aggressive organoid models
(Nf2"°-Setd2"°-4¢°P*") and an overall increase of transcriptomic het-
erogeneity when compared with wild-type or Nf2“°-Setd2*° organoids.
Furthermore, 4¢°% organoids displayed a significant enrichment for
genesinvolvedin cell-cycle progression, with ahigher fraction of cells
harboring transcriptomic features of S or G2/M phases along with mark-
ers of mesenchymal plasticity and sarcomatoid differentiation. These
evidences supportour previous observationsin SM-GEMMs and arein
line with patient-derived data” (Extended Data Fig. 6¢c-e€).

Analysis of single-cell trajectories revealed two major subclasses
within the 4¢°% experimental group, with evolutionary divergence
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Fig. 4 |Interferon signaling suppression drives expansion of aneuploid RCC
clones. a, Circos plots of the human to mouse synteny map for chromosome
regions significantly lost in SM-GEMM tumor-bearing mice, generated by the
SynCircos function of Synteny Portal. Magnification of the human chromosome
21region shows the genomiclocation and coordinates of the IFNR cluster.

b, Violin plot displaying interferon (Ifn) score calculated for four different
groups clustered by genomic data (P<1x 107, n= 87,718 cells). ¢, Violin plots
displaying expression values of Isg15 (top) and /rf7 (bottom) calculated for

four different groups clustered by genomic data (P <1x 107, n=87,718 cells).

d, Three-dimensional distribution of the Ifn score values for all the cells. e, Three-
dimensional representation of two subpopulations with high values of Ifn score
(left panel) and low values of Ifn score (right panel), displaying the distribution

inthe four different genomic groups and pseudotime values. n = 87,718 cells.

f, Expression values of two genes involved in chromosome stability and mitotic
checkpointin the Ifnlow and Ifn highgroups; P <1x1075.n=37,624 cells.

g, Violin plot displaying the CNV score in the ‘Ifn high’and ‘Ifn low’ groups;
P<1x1075, n=37,624 cells. h, Violin plot displaying fCNA values across different
tumors with9p~or9p~and 21q-, with or without WGD, in two different cohorts:
TCGA-KIPAN (left panel), P=2.76 x107,1.67 x 10 2and 1.46 x 1075; MSKCC (right
panel), P=1.76 x 10~ and 5.77 x 107 n = 922 tumors. i, Volcano plot showing

top upregulated and downregulated pathways, comparing 9p~and 21q” tumors
versus 9p~ tumors in the TCGA-KIPAN transcriptomic dataset. n = 788 tumors.
*P<0.05,**P<0.01,**P<0.001, ***P < 0.0001 by two-tailed Mann-Whitney test
(b,f-h).Rej., rejection; resp., response; TGCA-KIPAN, TCGA pan-kidney.

as ameasure of the inferred distance from the routes’ origin (Fig. 3d).
Cross-platform annotation of structural variants, as inferred from
scRNA-seq on organoids, identified loss of murine chromosome 16
(I6¢°) asagenomic determinant of malignant progression and molecu-
lar divergence, confirming multiregional WES data on SM-GEMMs

(Extended Data Fig. 6f). Single-cell transcriptomic analysis demon-
strated that cells acquiring spontaneous loss of chromosome 16 dis-
played increased distance from the origin of the route, suggesting
this genomic group to be the evolutionary endpoint in murine RCC
(Fig. 3e,f). These observations prompted us to hypothesize that if
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Fig.5|CINis associated with interferon signaling suppressionin RCC.

a, Dot plot showing copy number log values of the IFNAR2 gene across human
cell lines derived from nonhematological malignancies as calculated from the
Cancer Cell Line Encyclopedia (CCLE). Cell lines were divided based on their
aneuploidy score; P=0.0099.b, Dot plot showing copy number log values of the
ILIORB gene, across the same cell linesas a. P= 0.0099, n = 789 cell lines. ¢, Dot
plot showing copy number log values of the IFNARI gene, across the same cell
linesasa.P=0.00992, n=789 celllines. d, Dot plot showing copy number log
values of the IFNGR2 gene, across the same cell lines as a. P= 0.015, n = 789 cell
lines. e, Scatter dot plot copy number log values of two IFNR genes located on the

specific deleted chromosome 21 region; P<1x 107, n =789 cell lines. f, Heatmap
displaying the clinical, histological and genomic annotation of specific features
across MSKCC RCC cohort (upper left panel), TRACERx RCC cohort (bottom

left panel) and TCGA-KIPAN cohort (upper right panel). g, Bar plot showing co-
occurrence of 21q loss and 9p loss in the three different clinical cohorts; from left
toright, P=1.04 x10™*and 0.0016. From left to right, n = 788,101 and 134 tumors.
*P<0.05;**P<0.01;**P< 0.001; ***P< 0.0001 by two-sided Mann-Whitney test
(a-d), Pearson correlation (e) and two-sided Fisher exact chi-squared test (g).
N/A, not applicable; WT, wild type.

the loss of 4¢°°? is permissive for the emergence of clones with CIN,
16qloss might promote tolerance to aneuploidy and ultimately being
permissive to the expansion of clones with complex karyotypes. To test
this hypothesis, we performed in vivo functional assays showing that
transplants generated from short-term passaged 16 clones exhibit
amore aggressive behavior and resultin reduced survival when com-
pared with 16¢°"*“isogenic transplants (Fig. 3g), thus confirming that
16q isafunctional driver of cancer cell fitness and aggressive biological
features in renal cancer. Remarkably, cross-species synteny analysis
displayed a high level of homology between murine chromosome
16 and human chromosome 21, including a conserved ~200-kilobase
genomicregion harboring the interferonreceptor (IFNR) cluster genes
shown to be involved in type |, Il and Il interferon response (IFNARI,
IL1IORB, IFNAR2, IFNGR?2) (Fig. 4a). Accordingly, single-cell transcrip-
tomic analysis confirmed that 16¢™ populations were characterized
by asignificant suppression of the interferon signaling response when
compared with 16##"“ cells (P < 0.0001), together with activated pro-
grams involved in the mitotic checkpoint and regulation of cell-cycle

progression (Fig. 4b-fand Extended Data Fig. 6g-i). These evidences
therefore suggest that the disengagement of the interferon responsein
the context of aneuploidy is permissive for the expansions of aggressive
cancer cells and contributes to tumor heterogeneity and functional
clonal diversification (Fig. 4g). Exploiting publicly available databases
of human cancer cell lines across multiple solid tumor subtypes (Cancer
Cell Line Encyclopedia, CCLE) and cohorts of patients with RCC with
pathological and genomic annotations (TCGA; Tracking renal cancer
evolution through therapy, TRACERX; Memorial Sloan Kettering
Metastasis, MSK-Met), we confirmed a significant association between
IFNR cluster loss and aneuploidy, leveraging metrics of aneuploidy
score as WGD and fCNA genome. Analysis of multiple datasets and
integration of human and mouse RCC datashowed aninverse correla-
tion between interferon signaling and CIN (Figs. 4h,i and 5a-g and
Supplementary Table 1). Thus, RCCs with high levels of CIN demon-
strate selective evolutionary pressure towards the suppression of the
interferon response pathway through genetic loss of the IFNR cluster
on chromosome 21.
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IFNR cluster is a gatekeeper of RCC progression

Orthogonal validation of the role of IFNR cluster loss in promoting
tolerance to CIN was further provided through a functional genomic
approach leveraging genome-wide CRISPR screensin 16g™ and 16g°“®
isogenic lines. Specifically, deconvolution of enriched sgRNAs coupled
with Enrichment Pathway Analysis of gene targets confirmed a potent
cell-autonomous tumor suppressive role for the interferon signaling
pathway in renal cancer progression and a selective pressure to sup-
presstheinterferonresponsein 16" cells (Fig. 6a,b, Extended Data
Fig.7aand Supplementary Table1). To confirm CRISPR screens dataand
toclarify the functional effects of genes belonging to the IFNR cluster,
we designed sgRNA targeting Ifnarl and Ifngr2. Single-gene knockout of
Ifnarland Ifngr2, pharmacological pathway inhibition withJAK1/2 inhib-
itor (baricitinib) and treatment with exogenous interferon-o (IFN-o)
and -y (IFN-y) confirmed the tumor suppressive role of IFNR signaling
inin vitro assays (Extended Data Figs. 7b and 8a-h); at the molecular
level, genetic manipulation of the pathway resulted, as expected, ina
significant downmodulation of STAT1 phosphorylation (Extended Data
Fig. 8i-1). Similarly, in vivo transplantation studies demonstrated that
genetic knockouts of Ifnarl or Ifngr2 and inhibition of the JAK/STAT
signaling pathway confer a pro-tumorigenic and pro-metastatic phe-
notype in the context of euploid copies of chromosome 16 (Fig. 6¢c-e
and Extended Data Fig. 9a-f). These experimental evidences suggest
a cell-autonomous role of the loss of the syntenic region on murine
16g and human 21gin tolerating the deleterious effects of interferons
on the survival of cells under mitotic stress, establishing a putative
causalinteractionbetween the IFNR pathway, through JAK/STAT signal-
ing, and proliferation of cells with CIN*2. To provide a comprehensive
overview of the functional role of 16gloss and IFNR in RCC progression,
we designed gain-of-function studies in renal organoids and normal
renal tubular cell lines established from a murine model of Down syn-
drome with a partial trisomy of chromosome 16 spanning the IFNR
cluster (Ts65Dn)*. Through genomic engineering of wild-type and
Ts65Dn GEKOs, we introduced somatic knockouts of Nf2and Setd2 TSGs
and genomic disruption of chromosome 4¢*? via cotransduction of
AAV and adenoviral particles carrying an in-frame Cas9-GFP cassette
(Ad-Cas9-GFP) (Fig. 6f,g). Transplantation experiments confirmed a
dosage-dependent negative effect of interferon signaling on tumor
initiation and progression (Fig. 6h and Extended Data Fig.10a-e). WES
analysis of 13 cases of Nf2¥0-Setd2"°-4¢°"* engineered wild-type- and
Ts65Dn-GEKO-derived primary tumors collected at terminal stage
revealed that, despite pre-existing genomic abnormalities, RCC evo-
lution converges towards recurrent patterns of aneuploidy (gain
of chromosome 5¢, losses of chromosomes 12q and 16g), but, more
importantly, these datashowed that tumor development is consistently
associated with the loss of both 16¢g and the engineered extra copy of
chromosome 164. (Fig. 6i). Remarkably, chronic pharmacological sup-
pression of the JAK-STAT signaling pathway rescued this phenotype,

with tumors derived from engineered Ts65Dn organoids retaining
the artificial chromosome (Fig. 6j and Extended Data Fig. 10f). These
data corroborate the critical role of interferon signaling and IFNR clus-
ter dosage in renal tumorigenesis. Further experimental evidences
demonstrated that an extra copy of the IFNR cluster is sufficient to
dramatically impair tumorigenesis in vivo and proliferation in vitro
in SM-GEMM-derived kidney tubular cells, through the activation of a
potent senescence response, whichis fully rescued by pharmacological
inhibition of the IFNR pathway leveraging the JAK inhibitor baricitinib
(Fig. 6k and Extended Data Fig.10g-j).

Discussion

Altogether, we established functional proof of the central role of
9p loss in determining patterns of metastatic disease. Despite other
GEM models of renal cancer have been previosuly generated®, in
the present study, by engineering 9p21 loss in vivo, we generated
immune-competent somatic mosaic models of aggressive and meta-
static RCC. We thus demonstrated the critical role of specific genomic
eventsintriggering CIN and promoting the rapid expansion of aggres-
sive subpopulations with prominent metastatic behavior** >,

WES and WGS analyses provide insights into the modalities of
genetic evolutionin 9ploss-driventumors, revealing early emergence
and rapid selection of clones defined by WGD, CIN and highly con-
served patterns of aneuploidy. These features are in line with amodel
of punctuated equilibrium, where bursts of macroevolutionary events
drive rapid clonal sweeps and the selection of cells with high fitness®.
Interestingly, the proposed modelinforms on the existence of conver-
gent evolutionary trajectories®, as evidenced by cross-species geno-
type-phenotype analysis, and suggests that, providing there are the
appropriateinitiating oncogenic drivers, the evolutionary bottlenecks
shaping the cancer genome are consistent across species. This work
isin line with recent papers demonstrating convergent evolutionary
trajectoriesin murine and human pancreatic cancers, where the spon-
taneous loss of CDKN2A/B, TP53 and SMAD4 represents a constrained
route to malignant progression®**,

Analysis of scRNA-seq datashowed heterogenous transcriptomic
dynamics upon loss of 9p21, unlocking an increase in the number
of cell states and therefore a higher degree of tumor entropy. More
importantly, this study reveals a highly conserved and critical tumor
suppressive role of the interferon signaling pathway in the progres-
sion to advanced and metastatic RCC, particularly in the context of
tumors with high CIN* (Fig. 61). Our findings are in line with clini-
cal evidences showing that an increase in gene dosage at the IFNR
cluster locus in patients with Down syndrome is associated with a
decreased lifelong risk of developing solid tumors at the expenses of
a pro-senescent cellular phenotype and a proinflammatory milieu,
resulting in a higher risk of incidence of systemic inflammatory and
autoimmune diseases®>°. The loss of type l interferon signaling has

Fig. 6 | IFNR drives a senescence response that limits RCC progression. a, In
vitro CRISPR screening schematic. b, Volcano plot showing enriched pathways
in16qg- and 16g°" cell lines using as input the top ranked 2,000 TSGs. n = 60
differentially expressed pathways. ¢, Survival curve of 16¢°°“ tumor-bearing
mice with knockout of either Ifnar1 or Ifngr2; P=3.44 x10°and 4.20 x107.n=26
mice. d,e, Tumor dimensions and number of metastases; data are represented as
median values, minimum and maximum (sgCTR:1,702.5,198, 6,394; sgifnar1: 750,
405, 2,176; sglfngr2:1,702.5, 607, 6,250 for tumor dimensions; n =9 tumors per
group; and sgCTR: 21,10, 34; sglfnarl: 42, 35, 64; sgifngr2: 46,20, 57 for number

of metastases; n = 8 tumors per group) (d); and IHC of IFNAR1 and IFNGR2 in
primary tumors (e). P = 6.33x107*,2.72x1073,0.17,0.63. Scale bar,100 pum.

f, Schematic of the experimental design and GEKO generation for the Ts65Dn
model. g, Microscopicimages of wild-type (top left) and Ts65Dn (top right) GEKOs
coinfected with Ad-Cas9-GFP with or without the AAV-Nf2"-Setd2*°- 4¢°*".

Scale bar, 30 pm. Images representative of n = 2 experiments. h, Growth curve
oftransformed wild-type and Ts65Dn GEKOs transplanted subcutaneously;

dataare presented as mean + s.d. (wild type, n =5 tumors; Ts65Dn, n =5 tumors),
P=3.28 x107°.i, Scatter plots of GEKO wild-type- and Ts65Dn-derived tumors;
red arrows, amplifications; blue arrows, deletions. j, Chromosome 16 and 17
diagrams showing regions of amplification and deletion; from left to right:
normal tissue from Ts65Dn versus normal tissue from wild-type mouse; CRISPR-
induced tumor from Ts65Dn treated with vehicle versus normal tissue from
Ts65Dn; CRISPR-induced tumor from Ts65Dn treated with baricitinib versus
normal tissue from Ts65Dn. Boxes represent the genomic region affected with
partial trisomy in the Ts65Dn model. k, Quantification (left) and representative
picture (right) of GEKTCs derived from wild-type and Ts65dn mice, treated with
vehicle or baricitinib. n = 10 fields per condition, P=2.10 x 1075, Arrows indicate
the presence of multiple nucleiin senescent cells. Scale bar, 30 um. I, Schematic
proposing loss of chromosome 21 as a cell-autonomous mechanism to CIN
tolerance and evolution of advanced RCC. **P < 0.01, ***P < 0.001, ****P < 0.0001
by log-rank (Mantel-Cox) test, (c) two-way ANOVA (h) and two-tailed Student’s
t-test (d k). SA-Beta-Gal, beta-galactosidase.
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been observed upon malignant progression to metastatic dissemina-
tionand asamechanism ofimmune-evasion, particularly asan adaptive
response toimmune checkpoint blockade inmalignant melanomaand
epithelial cancers, through loss of the type linterferon ligands cluster
onchromosome 9p or through mutations of JAK1/2 (refs. 37-39). Here,
we provide functional proof of the pivotal role of the loss of the IFNR
cluster on 21q in the progression of renal cancers and the rationale
for a potential role in other tumor types. Notably, when compared
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suggesting that metastatic and aggressive tumor progression can be
largely anticipated through the analysis of specific drivers.

Methods

Animal models

The Pax8°™ strain was generated by Dr. Meinrad Busslinger and
obtained through the Jackson Laboratory, Stock no. 028196
(ref. 40). The H11'4“*° strain was generated by Dr. Monte M. Winslow
and obtained throughtheJacksonLaboratory, Stock no. 027632 (ref. 41).
The Rosa26"“™" was generated in Dr. Hongkui Zeng’s laboratory and
obtained through the Jackson Laboratory, Stock no. 007908 (ref. 42).
The Rosa26"fsiTdTomae yag generated in Hongkui Zeng’s laboratory and
obtained through the Jackson Laboratory, Stock no. 021875 (ref. 43).
Rosa26""*“ mice were generated by Dr. William G. Kaelin and obtained
through the Jackson Laboratory, Stock no. 034320 (ref. 44). The Ts65Dn
strain was generated by Dr. Muriel T. Davisson and obtained through
the Jackson Laboratory, Stock no. 001924 (ref. 23). Strains were kept
in a mixed C57BL/6 and 129Sv/Jae background, except for the Ts65Dn
which was kept in B6EiC3Sn background. Embryo collection was
performed at embryonic day 14. CB17SC-F SCID mice were purchased
from Taconic. All animal studies and procedures were approved by the
University of Texas MD Anderson Cancer Center (UTMDACC) Institutional
Animal Care and Use Committee. Allexperiments conformedtotherele-
vant regulatory standards and were overseen by the institutional review
board. Maximal tumor burdenwas notexceeded accordingto theinstitu-
tional review board guidelines: for orthotopic tumors, mice were eutha-
nized upon symptoms of distress; for subcutaneous transplantations,
maximal tumorburdenwas 2 cm® Nosexbiaswasintroduced during the
generation of experimental cohorts. Micewere keptinal2-hlight/12-hdark
cycleascommonly used, and housed at18-23 °C with humidity of 50-60%.

Animal procedures

Orthotopic kidney injection. First, 10 AAV particles were resus-
pendedin OPTI-MEM (Gibco) and Matrigel matrix (Corning) (2:1dilu-
tion). Six- to nine-week-old mice were shaved and anesthetized using
isoflurane (Henry Schein Animal Health). Analgesia was achieved
with buprenorphine slow release (0.1 mg kg™ two times per day)
(Par Parmaceutical) via subcutaneous injection, and shaved skin was
disinfected with 70% ethanol and betadine (Dynarex). A1-cmincision
was performed on the left flank through the skin/subcutaneous and
muscular/peritoneal layers. The left kidney was exposed and 20 pl of
viralresuspension was introduced by subcapsularinjection. Thekidney
was carefully repositioned into the abdominal cavity, and muscular/
peritoneal planes were closed individually by absorbable sutures. The
skin/subcutaneous planes were closed using metal clips. Mice were
monitored daily for the first 3 d, and then twice per week.

Subcutaneous transplantation. Tumor cells, GEKO-derived single-cell
suspensions and genetically engineered kidney tubular cell (GEKTC)
single-cell suspensions were resuspended in OPTI-MEM (Gibco) and
Matrigel (Corning) (2:1dilution) at a density of 2,000 cells per pl, and
100 plof cell suspensions were injected subcutaneously into the flanks
of 4-6-week-old CB17SC-F SCID female mice.

Treatments. Baricitinib treatment (Selleckchem, INCB028050) started
the day after subcutaneous transplantation of GEKOs and GEKTCs and
was administered via oral gavage at a concentration of 10 mg kg™ daily
until euthanasia.

Euthanasia, necropsy and tissue collection. Mice were euthanized
by exposure to CO, followed by cervical dislocation. A necropsy form
wasfilled inwith mouse information, tumor size and weight, infiltrated
organ annotations, and metastasis number and location. Euthanasia
was performed with animals at clinical terminal disease and metastatic
tumor burden.

Noninvasive imaging

A 7T Bruker Biospec (BrukerBioSpin), equipped with 35-mm
inner-diameter volume coil and 12-cm inner-diameter gradients, was
used for magnetic resonance imaging. A fast acquisition with relaxation
enhancementsequence with2,000/39-ms TR/TE (repetition time/echo
time), 256 x 192 matrix size, r156-uM resolution, 0.75-mmslice thickness,
0.25-mmslice gap, 40 x 30-cm?FOV (field-of-view), 101-kHz bandwidth
and 4 NEX (number of excitation) was used for acquired in coronal and
axial geometries a multi-slice T2-weighted images. All animal imag-
ing, preparation and maintenance was carried out in accordance with
MD Anderson’s Institutional Animal Care and Use Committee policies
and procedures. IVIS-100 procedure has been described elsewhere®.

GEKOs

Isolation and in vitro stabilization. Kidneys were isolated and tubular
fragments were isolated by collagenase digestion (C9407, Sigma) for
30 min at1 mg ml™. Fragments were seeded in growth factor-reduced
Matrigel (Corning) and cultured in medium (DMEM/F12 supplemented
with 1% penicillin/streptomycin, HEPES, GlutaMAX), with 2% B27 sup-
plement (Gibco), recombinant mouse noggin (50 ng ml™, Peprotech),
10% Rspol (Millipore-Sigma, SCM104), EGF (50 ng ml™, Peprotech),
FGF-10 (100 ng mI™, Peprotech), N-acetylcysteine (1.25 mM, Sigma),
A8301(5 pM, Tocris Bioscience) and primocine (0.1 mg ml™, Invivogen).
After 2 weeks, GEKOs were cultured using DMEM/F12 supplemented
with 1% P/S (penicillin/streptomycin), 10% FBS*.

Viral transduction. Three weeks after isolation, GEKOs were dissoci-
ated from Matrigel inice-cold PBS, collected and pelleted. Organoids
were plated at high confluency in 96 wells with DMEM/F12 supple-
mented with1%P/S,10% FBS and incubated with AAV (107 viral particles)
or AAV + Adeno Cas9-GFP (100:1 ratio, 10° viral particles and 10’
viral particles, respectively) for 8 h at 37 °C and 5% CO,. GEKOs were
collected, pelleted, and embedded in Matrigel or transplanted.

GEKTCs

Isolation and in vitro stabilization. Kidneys were isolated and tubular
fragments were collected by collagenase digestion (C9407, Sigma)
for 30 min at 0.5 mg ml™ at 37 °C and 5% CO,. Fragments were centri-
fuged for 5 min at 150g, washed and resuspended in appropriate
medium (DMEM/F12 supplemented with 1% penicillin/streptomycin,
HEPES, GlutaMAX), with 1.5% B27 supplement (Gibco), recombinant
mouse noggin (50 ng ml™, Peprotech), 10% Rspol (Millipore-Sigma,
SCM104), EGF (50 ng mI™, Peprotech), FGF-10 (100 ng ml™, Peprotech),
N-acetylcysteine (1.25 mM, Sigma), A8301 (5 pM, Tocris Bioscience)
and primocine (0.1 mg ml™, Invivogen). After five passages, GEKTCs
were cultured using DMEM/F12 supplemented with 1% P/S,10% FBS.

Viral transduction. Three passages after isolation, transduction was
achieved by incubating GEKTCs with AAV or AAV + Adeno Cas9-GFP
for 8 h at 37 °C, 5% CO, (viral concentrations as specified for GEKOs)
when cells were at 50% confluency. Cell cultures were then treated
with routine protocols.

Tumor cellisolation and culture

Ex vivo cultures from primary tumor explants were generated by
mechanical dissociation and incubation for 1 h at 37 °C with a solu-
tion of collagenase IV/dispase (2 mg ml™) (Invitrogen), resuspended in
DMEM (Lonza) andfiltered. Cells derived from tumor dissociationand
digestion were plated on gelatin 0.1% (Millipore-Sigma)-coated plates
and culturedin DMEM (Lonza) supplemented with 20% FBS (Lonza) and
1% penicillin-streptomycin and kept in culture for five passages or less.

Cell proliferation and clonogenic assay
Cells were seeded in a 96-well plate (500 cells per well) in medium
supplemented with recombinant IFN-a. 50 IU mI™ or IFN-y 50 IU ml™ or
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vehicle. Cellswereincubated at 37 °C, 5% CO, in the IncuCyte (Essenbio-
science) incubator. Cell confluency was measured and analyzed over a
period of 5-8 d and medium was changed every 24 h.

For clonogenic assay, 100 cells were seeded in a six-well plate in
medium supplemented with recombinant IFN-a 50 IU ml™ or IFN-y
50 IU mI™ or vehicle and maintained at 37 °C, 5% CO, (medium was
changed every 24 h). After 8-15d, clones were fixed and stained with
crystalviolet (0.25% crystal violet in methanol 20%). Colonies withmore
than approximately 50 cells were counted manually and clonogenic
survival fraction was expressed as the relative plating efficiencies of
the irradiated cells to the control cells.

Protein extraction and western blot analyses

For cellular protein lysates, cells were scraped on ice using cold
Ripa lysis buffer (150 nM NaCl, 50 mM Tris HCI pH 8, 1% Igepal, 0.5%
sodium deoxycholate, 0.1% SDS) supplemented witha HALT protease
and phosphatase inhibitor cocktail (ThermoFisher). Cell lysates
were centrifuged at 17,500g for 20 min at 4 °C and supernatants were
collected.

Proteins were separated in 4-20% SDS-PAGE (Criterion Precast
Midi Gel, Bio-Rad) and transferred to nitrocellulose membranes
(Trans-Blot Turbo Midi 0.2-pm nitrocellulose transfer pack, Bio-Rad).
Membranes were blocked with 5% nonfat dried milk in PBS and incu-
bated at 4 °C overnight with primary antibodies (pY701STAT1 catalog
no. 9167, STAT1 catalog no. 9172, Cell Signaling Technology; H3 catalog
no. sc-517576, Santa Cruz Biotechnology; tubulin catalog no. T9026,
Millipore-Sigma; dilutions 1:1,000)

Membranes were washed in PBS and incubated for 1 h at room
temperature with the appropriate horseradish peroxidase-conjugated
secondary antibodies (Cell Signaling Technology) for ECL (enhanced
chemoluminescence) detection (SuperSignal WEST Pico PLUS Chemi-
luminescent Substrate, ThermoFisher).

Beta-galactosidase staining

Passage 5 GEKTCs were seeded ina six-well plate and cultured for 7 din
the presence or not of 1 uM baricitinib. Beta-galactosidase staining was
performed according to the manufacturer’s protocol (Cell Signaling
Technology no. 9860). Images were captured with an EVOS XL Core
Imaging System.

sgRNA design and validation
sgRNAs were designed with the GenScript CRISPR sgRNA Design
Tool (https://www.genscript.com/gRNA-design-tool.html?a=post).
5’-phosphorilated oligos were annealed and diluted 1:20. Then 1 pl of
eachannealed and diluted sgRNA was cloned in digested lentiCRISPR
V2 (Addgeneno.52961) according to Dr. Feng Zhang's protocol (https://
media.addgene.org/cms/files/Zhang_lab_LentiCRISPR_library_proto-
col.pdf). NEB Stable Competent £. coli (C3040I) colonies resistant to
ampicillin antibiotic selection were amplified, and presence of sgRNA
was confirmed by Sanger sequencing. Positive clones were transfected
individually in 293 cells along with vectors for lentiviral packaging
production, psPAX2 (Addgene no. 12260) and pMD2G (Addgene no.
12259). MCT (mouse cortical tubule) cells were infected by lentivi-
ral particles carrying a specific sgRNA and selected for puromycin
resistance. Cut efficiency of sgRNA was tested by T7 Endonuclease
I (NEB no. M0302L) assay on the DNA of infected cells, according to
the manufacturer’s protocol (https://www.neb.com/protocols/
2014/08/11/determining-genome-targeting-efficiency-using-t7-
endonuclease-i).

sgRNA sequences: Nf2: GTATACAATCAAGGACACGG, Setd?2:
CTCGGGTGAAAGAATATGCA, Trp53: GACACTCGGAGGGCTTCACT,
Cdkn2a: GTGCGATATTTGCGTTCCGC, Cdkn2b: GGCGCCTC
CCGAAGCGGTTC, Bapl: GAATCGGTCTTGCTACTGCA, Vhl: CGTT
CCAATAATGCCCCGGA, Ifnarl: ACAGTTGACATAAACAAGCA, Ifngr2:
TGGACCTCCGAAAAACATCT.

Primers list: Nf2 For: CCTGCTTGTCTGGGAAGTCTGT, Nf2 Rev:
GTCTCACCAACTAGCCATCTTCC; Setd2 For: TTGATTGCTGAAGGG
TGTAACTCA, Setd2 Rev: CTGGCCTCAAACTTCCTAAACAGA; Trp53
For: CCGCCATACCTGTATCCTCC, Trp53 Rev: GCACATAACAGACT
TGGCTG; Cdkn2a For: AAGGGCAGGGTGTAGAGTAAC, Cdkn2a Rev:
CAGGTGATGATGATGGGCAA; Cdkn2b For: GGAATTAAGTGCTGGGT
TGGAG, Cdkn2b Rev: CAGGACGCTCACCGAAGCTA; BapIFor: GCCAGA
ACCACGTCACCTTC, Bap1Rev: CAGGCCACAGGCAACCTAAA.

Recombinant DNA

Packages of two or more guide RNAs were designed and synthetized
according to the following scheme: Ecorl restriction site - U6 pro-
moter - gRNA1 sequence - gRNA scaffold - polyA - U6 promoter -
gRNAn sequence - gRNA scaffold - polyA - Ascl restriction site. The
synthetic sequence was assembled into the pEMS2158-FLEx-FIpo
AAV vector (Genscript) into the Ecorl and Ascl restriction sites.
The pEMS2158-FLEx-Flpo was generated by PCR amplification
of FLEX(loxP)-FIpO from the pTCAV-FLEx(loxP)-FIpO vector
(Addgene no. 67829) and cloned into the Ascl and BsrGl sites of the
pEMS2158 vector (Addgene no. 70119). AAV PHP.eB (Addgene no.
28304-PHPeB) carrying FLEX-GFP sequence was used for injections
in PaX8Cre/+-ROSa26LSL-FSF-TdT/LSL-Luc mice.

Virus production

Plasmid DNA preparations were generated using endotoxin-free MIDI
kits (Qiagen). Large-scale AAV particle production was outsourced
to Vigene Biosciences (10" IU mI™). Viral preparations were stored in
aliquots at =80 °C. Lentiviral particles were produced using psPAX2
and pMD2G helper plasmids. For transfection, 293T cells were cul-
tured in DMEM containing 10% FBS (Gibco), 100 IU mI™ penicillin
(Gibco), 100 pg ml™ streptomycin (Gibco) and 4 mM caffeine (Sigma
Aldrich) and transfected using the polyethyleneimine method.
Virus-containing supernatant was collected 48-72 h after transfec-
tion, spun at 3,000 r.p.m. for 10 min and filtered through 0.45-pum
low-protein-binding filters (Corning). High-titer preparations were
obtained by multiple rounds of ultracentrifugation at 23,000 r.p.m.
for 2 h each. Adeno Cas9-GFP was purchased from Vector Biolabs
(catalogno.1901).

Staining

Immunohistochemistry (IHC) and immunofluorescence were per-
formed as previously described®. Antibodies list: RFP (ThermoFisher,
catalogno. MA5-15257,1:100 dilution), GFP (Abcam, catalog no.13970,
1:100 dilution), Vimentin (Abcam, catalog no. ab8978,1:200 dilution),
Pax8 (Proteintech, catalog no.10336-1-AP, 1:200 dilution), CD31 (Cell
Signaling, catalog no. 77699S, 1:100 dilution), Ki67 (ThermoFisher,
catalog no. MA5-14520, 1:500 dilution), cGAS (Cell Signaling, catalog
no. 31659, 1:50 dilution).

Multispectral imaging using the Vectra Microwave treatment was
applied to perform antigen retrieval, quench endogenous peroxidases
and remove antibodies from earlier staining procedures. The slides
were stained with primary antibodies against RFP, Pax8 and Vimentin,
and TSA (tyramide signal amplification) dyes to generate Opal signal
(vimentin, Opal 570; RFP, Opal 620; and Pax8, Opal 690). The slides were
scanned with the Vectra3image scanning system (Caliper Life Sciences),
and signals were unmixed and reconstructed into a composite image
with VectrainForm software 2.4.8.

GEKOs were disaggregated using Trypsin to obtain a single-cell
suspension and 10,000 GEKO-derived cells were embedded in 10%
Phenol Red Free Reduced Growth Factor (GFR) Matrigel (Corning)
mixed with the GEKO medium and layered on top of a bottom layer
of polymerized GFR-Matrigel, in an eight-well Labtek chamber slide
(BectonDickinson). Embedded cells wereincubated at 37 °C for 1 week.
When the GEKOs were fully formed, morphological assessments were
carried out usingimmunofluorescent staining. GEKOs were fixed in 4%
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PFA for 30 min at room temperature, permeabilized using1 x PBS and
0.1%Triton X-100 for 10 min at room temperature, and washed twice
with 1 x PBS for 30 min at room temperature, and then blocked using
1x PBS, 5% goat serum, 0.1%Triton X-100, 3% BSA. Primary antibod-
ies (Pax8 and GFP) were incubated ON at 4 °C. Secondary antibodies
(AlexaFluor 488-,594-conjugated, Invitrogen) were incubated for 1 h
atroom temperature, and nuclei were counterstained using DAPI for
10 min at room temperature. Samples were analyzed using a confo-
cal laser-scanning microscope (TSP8, Leica) interfaced with a Leica
fluorescent microscope. Collected images were analyzed using the
LAS (Leica) software.

Estimation of purity was calculated as percentage of positive area
for TdTomato (TdT) IHC staining. IHC Profiler was used for quantifica-
tion of TdT% (ref. 47).

Metaphase spread and chromosome count
Immunofluorescence on metaphasic spread was obtained as previ-
ously described with few modifications*®. Cultures were treated with
100 ng ml™ nocodazole for 8 h overnight, collected by trypsinization,
resuspendedin 0.2% (w/v) KCland 0.2% (w/v) trisodium citrate hypo-
tonic buffer at room temperature (20-22 °C) for 10 min and cytocen-
trifuged onto SuperFrost Plus glass slides (MenzelGlaser) at 450g for
10 mininaShandon Cytospin 4. Slides were fixed at room temperature
for 10 min in 1 x PBS with 4% (v/v) formaldehyde, permeabilized for
10 minatroom temperature in KCM buffer (120 mM KCI, 20 mM NaCl,
10 mM Tris (pH 7.5) and 0.1% (v/v) Triton X-100) and blocked with 5%
goat serum, 1 x PBS, 0.1% Triton and 100 x BSA 3% for 30 min at room
temperature. Slides were incubated with primary antibody diluted in
antibody dilution buffer (1 x PBS 0.1% Triton, 100 x BSA 3%) for 1 h at
room temperature, washed in 1 x PBST (1 x PBS with 0.1% (v/v)), incu-
bated with secondary antibody diluted in antibody dilution buffer for
30 min at room temperature, washed with 1 x PBST and stained for
DNA with DAPI. Primary antibody: anti-centromere (1:250; Antibodies
Incorporated). Secondary antibody: goat anti-human conjugated to
AlexaFluor 488 (1:500; A-11013).

NGS of murine DNA

Exome libraries and whole-genome libraries were prepared using
amodified protocol®. Modifications included: the use 0of 1,000 ng
of treated gDNA, performing only six cycles of PCR amplification
and usage of the Agilent SureSelectXT Mouse All Exon Kit for exon
target capture. For murine WGS, after adapter ligation, libraries were
only amplified by two cycles of PCR. Equimolar quantities of the
whole-genome indexed libraries were multiplexed, with 18 libraries
per pool. Results from 13 of the 18 libraries were used in our analysis.
All pooled libraries were sequenced on an Illumina NovaSeq6000
using the 150-base pair (bp) paired-end format.

Bioinformatic processing of high-throughput sequencing
data

The bioinformatic processing pipeline of raw WES and WGS high-
throughput sequencing data was adapted for murine data from Seth
et al.”°, Reads were aligned to the mouse genome reference (mm10)
using Burrows-Wheeler Aligner withaseed length of 40 and amaximum
editdistance of 3 (allowing for distance % 2in the seed)’’. BAM files were
further processed according to GATK Best Practices, including removal
of duplicate reads, realignment around indels and base recalibration®.

Analysis of sgRNA performance

Expected cut sites of sgRNAs were analyzed using CRISPResso2 (ref. 53).
BAM files were first filtered with SAMtools® to contain reads spanninga
50-bpregion centered around the expected sgRNA cut site and passed
to CRISPResso2 in ‘CRISPRessoWGS’ mode. The allele frequency of
eachbase position around the cut site window was extracted fromthe
CRISPResso2 results. An odds ratio for probability of a base position

difference from the reference genome for each tumor sample and its
respective matched normal sample was calculated by Fisher’s exact
test by counting the number of base alterations observed at each cut
site window position. The odds ratios were transformed by naturallog
and z-transformation against the average log-odds ratio for all base
positions of the same gene. The z-transformed log-odds ratios were
then averaged across all gene cut sites for asample to summarize the
overall editing efficiency of the sgRNAs delivered to each mouse™.
Genes were considered altered if at least two reads with the same
pattern of base alteration were detected at the expected sgRNA cut site
andif coverage of the envisaged targeted region was inferior to 50% of
the region median coverage of a healthy control.

Identification and characterization of somatic mutations
Somatic mutations were detected from murine tumor samples using
acombination of MuTect v.1(ref. 54) to call somatic SNVs and Pindel*®
to callsomaticinsertions and deletions (indels). Tumor samples from
both WES and WGS were compared with their respective matched
control. All mutations were also filtered for depth (tumor sample
coverage >20x, normal sample coverage >10x) and VAF (VAF > 0.1).
Additional filters for Pindel calls were implemented due to a known
false-positive bias for Pindel. VAFs were also re-derived for Pindel
calls across all samples by interrogating reads from BAM files. The
20 nucleotides immediately following each Pindel call were also
examined to confirm that no nucleotide sequence (length < 6) was
repeated more than two times, eliminating false-positive indel calls
that may happenin highly repetitive regions. Allmutations annotated
togenomicregions not targeted by an sgRNA detected inatleast one
sample were kept.

Mutation patterns of WGS samples were then determined by
extractingall passing somatic SNVs as called by Mutect v.1and mapped
to the corresponding pyrimidine trinucleotide context-specific
somatic SNV. Duplicate mutations in different samples originating
from the same mouse were removed, and then the frequency of each
trinucleotide context-specific mutation for each mouse sample cohort
of metastatic samples or of primary tumors plus cell line samples was
calculated. Comparative analyses of mutational signatures in human
and murine tumors were performed according to Alexandrov et al.”.
The counts across all trinucleotide context-specific somatic SNVs were
thensummed across the entire cohort and frequencies calculated for
the entire summed cohort.

Identification of somatic copy number profiles and events
CNVkit* was used to derive somatic copy number profiles from WES data
using a panel of normal samples consisting of all the matched normal
samples across allmice sequenced inthis study. The targeted exome bed
file for the Agilent SureSelect AllMouse Exon V1was downloaded from
Agilent with the original mm9 coordinates and was then converted to
mm10 using CrossMap v.0.3.4 for use by CNVkit. Occurrences of CNVs
in focal regions of the genome were called if all exons spanning the
region of interest had an absolute weighted average log, read-depth
ratio of >0.4. Otherwise, GISTIC2 was runwith amplificationand deletion
thresholds of 0.2, using gene-level assumptions for significance, along
with additional broad-level analysis. The GISTIC2 reference genome
file for mm10 was acquired, and no marker file was necessary®*.
Sequenza*’ was used to derive somatic copy number profiles from
WGS datausing each sample’s matched normal sample. To assign ploidy
to WGS samples, purity was first estimated by TdT protein, and the
ploidy with the largest predicted probability at the estimated purity
was selected from the Sequenza cellularity-ploidy prediction table.

Construction of tumor progression sample tree representation
Thesample progression tree representation of tumors was constructed
with hierarchical clustering using the complete linkage algorithm and
the hamming distance between samples. The hamming distance was
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calculated as the number of nondriver somatic mutations shared by
any twosamples asafraction of the total number of nonsomatic muta-
tions contained by either sample. Visualizations of sample progression
trees were manually generated. Branch lengths of O were collapsed to
thedirect ancestor node. Only mutations detected in all descendants
of abranch were considered.

Statistical analysis of clinical RCC cohort data

Processed clinical, copy number, somatic mutation and molecular
characterization data from the TCGA pan-kidney (TGCA-KIPAN) tumor
sample cohort were obtained from Ricketts etal.". TCGA profiling data
were then augmented with arm-level copy number calls, aneuploidy
score and WGD status as determined by Taylor et al.>®. The aneuploidy
score was then transformed to calculate a fraction of genome altered
(fCNA) as described by Taylor et al.**. TCGA tumors with sarcomatoid
features were manually annotated as described by Bokouny et al.”".
Clinical data used for confirmation of genomic effects of 9p loss on
WGD and aneuploidy were acquired from the TRACERx renal cell cancer
cohortand an RCC cohort from the Memorial Sloan Kettering Cancer
Center kidney cancer cohort (MSK-Met)*".The aneuploidy score for
TRACERx samples was calculated using the arm-level chromosome
alteration calls from TRACERx directly and then converted to an fCNA
value as described by Taylor et al®.

B-allele frequency comparison

Murine B-allele frequencies (BAFs) were calculated using the snp-pileup
script from the FACETS software package on WGS samples®. The VCF
of identified murine SNP locations was obtained from the Wellcome
Sanger Institute, Mouse Genome Project v.5, dbSNP142 (ref. 62). The
snp-pileup counts were then utilized to determine the allele frequen-
cies of these common murine SNPs. Heterozygous SNPs were identified
ifthe BAF (alternative nucleotide) was 0.2 < BAF < 0.8, with minimum
coverage of 15xinthe normal tumor sample. BAFs of heterozygous SNPs
identified in each mouse’s normal tissue sample were plotted against
corresponding tissue sample BAFs for the same SNP.

Single-cell sequencing sample and library preparation

GEKOs were dissociated from Matrigel and resuspended as single-cell
suspensionsinlx PBS, 2.5% FBS solution for further processing. Chro-
mium single-cell sequencing technology from 10x Genomics was used
to perform single-cell separation, complementary DNA amplifica-
tion and library construction. Cellular suspensions were loaded on
a10x Chromium Single Cell Controller to generate single-cell gel
bead-in-emulsions. The scRNA-seq libraries were constructed using
the Chromium Single Cell 3'Library & Gel Bead Kit v.2 (PN-120237,10x
Genomics). The HS dsDNA Qubit Kit was used to determine the concen-
trations of boththe cDNA and the libraries. The HS DNA Bioanalyzer was
used for quality-tracking purposes and size determination for cDNA
and lower-concentrated libraries. Sample libraries were normalized to
7.5nMand equal volumes were added of each library for pooling. The
concentration of the library pool was determined using the Library
Quantification qPCR Kit (KAPA Biosystems) before sequencing. The
barcoded library at the concentration of 275 pM was sequenced on the
NovaSeq6000 (Illumina) S2 flow cell (100 cyclekit) usinga26 x 91run
format with 8-bp index (read 1). To minimize batch effects, the libraries
were constructed using the same versions of reagent kits and follow-
ing the same protocols, and the libraries were sequenced on the same
NovaSeq6000 flow cell and analyzed together.

scRNA-seq data processing and analysis

Theraw scRNA-seq datawere preprocessed (demultiplex cellular bar-
codes, read alignment and generation of gene count matrix) using the
Cell Ranger Single Cell Software Suite. Genes detected in fewer than
three cells and cells with low-complexity libraries (in which detected
transcripts were aligned to fewer than 350 genes) were filtered out

and excluded from subsequent analysis. Low-quality cells with >25%
of mitocondrial transcripts were considered apoptotic and excluded.
Following removal of the poor-quality cells, atotal of 87,718 cells were
retained for downstream analyses. Library size normalization was
performed in Seurat” on the filtered gene—cell matrix to obtain the
normalized UMI (unique molecular identifier) count data. Cluster
analysis, group determination and cluster distribution among different
experimental groups were performed with the Seurat package”. The
cell-cycle stage was computationally assigned for each individual cell
by the Seurat function CellCycleScoring. Cell-cycle signature, EMT
(epithelial-to-mesenchymal transition) signature and interferon score
were calculated based on the expression profiles of three publicly
available signatures (‘KEGG_CELL_CYCLE’, 'HALLMARK_EPITHELIAL_
MESENCHYMAL_TRANSITION’, ' HALLMARK_INTERFERON_ALPHA_
RESPONSE’). Monocle 3 alpha?® was applied as an independent tool
for unsupervised trajectory analysis and three-dimensional graphs
were generated using Monocle 3 reduce dimension and plot dimen-
sions for dimensionality reduction and visualization. Pseudotime was
calculated with Monocle 3 functions. Inferred CNVs from scRNA-seq
data were generated with inferCNV (https://github.com/broadinsti-
tute/inferCNV) and the following parameters: wild-type organoids
were used as a normal reference; cutoff was set at 0.1; minimum cells
per gene equalto 3.

Genome-wide CRISPR screening

Briefly, lentiviral particles of the mouse genome-wide CRISPR library
(mTKOV3) were generated by the University of Michigan Biomedical
Research Lentiviral Core and concentrated 100x. Cells were transduced
with the mouse genome-wide CRISPR library in 500-cm?square dishes
(Corning) with 8 pg ml™ polybrene (Santa Cruz Biotechnology) at MOI
(multiplicity of infection) of 0.3 and an estimated 400x coverage.
The medium was replaced 24 h after infection and after another 24 h
puromycin selections were started. After 72 h, cells were trypsinized,
pooledtogether and counted. As areference, 30 x 10° cells were imme-
diately collected. Every passage of 15 x 10° cells (-200x coverage) was
maintained in culture until the endpoint (20 doublings) when 30 x 10¢
cells (-400x coverage) were collected.

The cell pellets were suspended in 2 ml of Buffer PI/RNAse A and
lysed by adding 1/20 volume of 10% SDS (Promega). After mixing and
10 min of incubation at room temperature, the genomic DNA (gDNA)
was sheared by passing the lysate 10-15 times through a 22-gauge
syringe needle. Then, the first extraction step was executed by adding
1volume of phenol:chloroform:isoamyl alcohol (25:24:1, molecular
biology grade (Sigma Aldrich)) to the lysate. The samples were cen-
trifugated at 17,000g for 10 min and the upper phase was moved to a
new tube. Then, the second extraction step with chloroform:isoamyl
alcohol (24:1 (Sigma Aldrich)) was performed. Afterwards, the upper
phase was transferred to a new tube and mixed with 0.1 volumes of
3 M NaCl (Sigma Aldrich) and 0.8 volumes of 2-propanol (Fisher Sci-
entific) to precipitate the gDNA. The samples were centrifugated at
17,000g for 20 min at 4 °C and then the DNA pellet was washed once
in 70% ethanol (Fisher Scientific) and centrifuged again for 5 min
at17,000g at 4 °C. The DNA pellet was then dried and resuspended
overnight in UltraPure distilled water (Invitrogen). The gDNAs were
quantified by NanoDrop 2000 (Thermo Scientific). For the genera-
tion of NGS libraries, barcodes were amplified in two rounds of PCR
using the Titanium Taq DNA polymerase (Clontech-Takara). The first
PCR reactions contained 10 pg of gDNA per PCR reaction and the
total reactions resulted in targeted amplification from a third of the
total gDNA. The first 16 cycles targeted PCR amplification and uti-
lized the following primer set: mMTKOv3-PCR1-F: ATTAGTACAAAATAC
GTGACGTAGAA and mTKOv3-PCR1-R: ACCTTCTCTAGGCACCG
GATCA. The second PCR reactions were performed for 14 cycles
using the following primers with adapters optimized to introduce
the specific adapters for Illumina NGS technology specific for the
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Hiseq4000: mTKO-P2-F: AATGATACGGCGACCACCGAGATCTACACGA
GATCGGACTATCATATGCTTACCGTAACTTGAA and mTKO-P7##-IND:
CAAGCAGAAGACGGCATACGAGATGCACGACGAGACGCAGAC
GAANnNNNnAGAGCAACTTCTCGGGGACTGTGGGCGA. Amplified PCR
products fromtwo replicates of the second PCRreactions were pooled
together and extracted from agarose gel with the QIAquick gel purifi-
cation kit (QIAGEN). Samples were quantified using Qubit 2.0 DNAHS
Assay (ThermoFisher), QuantStudio 5 System (Applied Biosystems)
and Tapestation High Sensitivity D1000 Assay (Agilent Technolo-
gies). Six samples were pooled equilmolar to be run on a Nextseq 500
high-output 75-bp SR with 10% PhiX. Custom primers were required
for Read 1 (20 nt): mTKO-Seq-26bp TCTTGGCTTTATATATCTTGTGG
AAAGGACGAAACACCG, and to obtainthe sampleindex, Read 2 (6 nt):
mTKO-Seq-Index-7 AGATGCACGACGAGACGCAGACGAA.

Bioinformatic analysis. Bowtie® was used to obtain raw read-counts
for eachscreen, with1mismatch allowance, taking the best-matching
sgRNA per read. Following this, BAGEL2 (ref. 64) software was used
to calculate normalized read-counts, and log, foldchange was
obtained for each screen compared with the reference timepoint
of the corresponding cell line. Next, TSGs were determined by iden-
tifying the genes with the highest log, foldchange in each cell line
model. The top 2,000 log, foldchange ranked TSGs were used as an
input for Enrichment Pathway Analysis using Reactome and Panther
databases.

Summary of methods for RCC MSK cohort

RCC tumor specimens from 134 patients were procured from the
Memorial Sloan Kettering (MSK) Pathology Department after ethics
review board approval. Primary and metastatic deposit specimens were
reviewed by aspecialized genitourinary pathologist. Clinicopathologic
and molecular data for 62 of these patients have been reported in a
previous publication®.

Macro-dissected tumor and paired adjacent normal kidney tissue
orblood were sent for DNA extraction and sequencing at the Integrated
Genomic Operations Core of MSK or the Molecular Diagnostics Service
laboratory of the Department of Pathology. Sequencing was done on
both the tumor and matched normal samples using the MSK-IMPACT
gene panel (MSK-IMPACT)®. Samples were sequenced at an average
depth of 500x.

Raw sequencing data were aligned to a reference genome (b37)
and somatic variants were called using a previously validated pipeline.
Briefly, four different variant calling tools were used for this purpose:
MuTect2 (part of GATK v.4.1.4.1)*?, Strelka2 v.2.9.10 (ref. 66), Varscan
v.2.4.3 (ref. 67) and Platypus®®. Ancillary filters were then applied to
obtain high-accuracy mutations; these included: a coverage of at least
10readsinthe tumor, with 5or more supporting the variant of interest,
aVAF = 5%in the tumor and a VAF < 7% in the matched normal sample.
Only somatic nonsynonymous exonic mutations were considered, and
SNVsidentified atafrequency >1%in dbSNP or 1000Genomes projects
were removed. All variant calls were manually reviewed by investigators
for additional accuracy.

Allele-specific copy number analysis and purity estimation were
done using the FACETS algorithm v.0.5.6. Inference of arm-level and
genome-doubling events was performed using a public R package
(https://github.com/mskcc/facets-suite). AllCNVsin autosomal chro-
mosomes were considered, regardless of length. Informed consent was
obtained after the nature and possible consequences of the studies
were explained.

Analysis of the CCLE

Datawere retrieved from the DEPMAP database (https://depmap.org/
portal/). Tumor celllinesfromsolid tumorswereincluded in the analysis
and divided into ‘low’ (lower quartile) and ‘high’ (upper quartile)
aneuploidy score and compared for log copy number values.

Statistics and reproducibility

Data are presented as the mean or median + s.d. and percentages.
Comparisons among biological replicates were performed
using two-tailed Student’s ¢-test, two-way analysis of variance
(ANOVA) and Mann-Whitney U test. Results from survival experi-
ments were analyzed with log-rank (Mantel-Cox) test and expressed
as Kaplan—-Meier survival curves. Results from contingency tables
were analyzed using two-tailed Fisher’s exact test or chi-squared
test for multiple comparisons. All of the statistical analyses were
performed with GraphPad Prism software. Data distribution was
assumed to be normal without formal testing. Group size was deter-
mined on the basis of the results of preliminary experiments. No
statistical methods were used to determine sample size. No data
were excluded from the analysis. Group allocation and analysis of
outcome were not performed in a blinded manner, with the
exception of in vivo treatment with baricitinib. In vitro experiments
were repeated three times, while in vivo experiments were performed
atleast twice.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data supporting the findings of this study are available within
the article and its Supplementary Information. Murine genomic and
single-cell RNA-seq raw data have been deposited in the Sequence
Read Archive (SRA) under accession code: PRJNA835458. Previ-
ously published datasets and information info are available with
the following links and accession codes: https://doi.org/10.6084/
m9.figshare.21637199.v2 (Broad DepMap (2022): DepMap 22Q4 Pub-
lic); EGAS00001002793 (TRACERx genomic data)?; http://cancerge-
nome.nih.gov/ (TCGA Research Network, pan-kidney transcriptomic,
genomicand clinical data); GSE85971 (MSKCC genomic data). Requests
for resources and reagents can be directed to the lead contact G.G.
Source data are provided with this paper.

Code availability

Codes used for this manuscript have been previously published and
adequately referenced in this manuscript. Methodological details
on parameters used are available in the Methods section of this
manuscript.
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Extended Data Fig. 1| Clinical features of RCC characterized by loss of 9p.
a) Odds plot showing enrichment fatal events in NF2KO/9p™ cases and stage I1l/
IVamong MSKCC cohort patients, data are represented as hazard ratios with
upper and lower limits (N =134 patients), p values = 2.70*10-4 and 1.68*10-7.
b-c) Bar charts showing the prevalence of metastasic (b), p value = 9.21*10-3,
and sarcomatoid (c), p value = 1.80*10-4 features in NF2wt/9pwt, NF2KO/9pwt,
NF2wt/9p~, and NF2KO/9p- cases in the MSKCC cohort (N = 52,10, 51,and 21
patients, respectively). d) Representative H&E stained images from two MSKCC
cohort cases. Upper panel: NF2KO/9pwt; bottom panel: NF2KO/9p-. Images
representative of the genomic background. In the latter, sarcomatoid features
arereadily observed. e) Kaplan-Meier survival analysis of human RCCs with
and without sarcomatoid features in MSKCC (N =16 vs N = 97 patients) (left
panel), TCGA (N =45 vs N = 743 patients) (middle panel) and TRACERx (N =10
vs N =91 patients) (right panel) cohorts, p values = 2.37*10-4, p value <1*10-15
and p value = 0.016. f) Kaplan-Meier survival analysis of human RCCs withand

without 9p loss features in MSKCC (N = 72 vs N = 62 patients) (left panel), TCGA
(N=140vs N = 658 patients) (middle panel) and TRACERx (N = 57 vs N =38
patients) (right panel) cohort, p values = 0.023,1.21*10-8, 0.045. g-h) Bar chart
showing the prevalence of sarcomatoid features in 9pwt and 9p- cases in TCGA
pan-RCC dataset (N = 648 vs N = 140 tumors) (g), p value = 0.025, and TRACERX
RCC dataset (N = 45vs N = 61tumors) (h). i-j) Bar chart showing the prevalence
of stagel/ll and stage Ill/IV features in 9pwt and 9p- cases in TCGA pan-RCC
dataset (N =628 vs N =136 patients) (i) and TRACERx RCC dataset (N = 45vs

N = 61patients) (j), p values =1.56*10-8 and 9.29*10-5. k-1) Bar chart showing
the prevalence of metastasis features in 9pwt and 9p- cases in TCGA pan-RCC
dataset (N =628 vs N =136 patients) (k) and TRACERx RCC dataset (N=45vs

N =61patients) (I), p values = 2.86*10-4 and 0.008. ns.: not significant, * P < 0.05,
**P<0.01,**P <0.001,***P < 0.0001 by two-sided Fisher’s exact test (b, c, g-1),
log-rank (Mantel-Cox) test (a,e, f). Scale bar:100 um.
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Extended Data Fig. 3 | Mutational signatures of metastatic disease.
a) Trinucleotide context-specific somatic SNV frequencies as detected by WGS
in2 metastatic samples (upper panel), 6 primary tumors and 2 cell line samples
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4| WGD and polyploidization are critical events in
metastatic RCC. a) Summary of segment-level amplification or deletion
frequency across murine primary tumors or metastatic lesions as determined by
GISTIC2. b) Representative scatter plots of exon-level log2(Read-Depth Ratios)
as calculated by CNVkit from primary tumor derived cell lines from tumor within
Cluster #1 (left panel) and Cluster #2 (right panel), where different patterns of
chromosomal alterations can be appreciated. c) Representative sections of TdT
stained tumor tissues. Images representative of N = 2 experiments. d) Cellularity
estimation of primary and metastatic samples as assessed through TdT positive
cell quantification, data are presented as mean values +/- SD (N = 4 fields per
tumor). e) Most probable ploidy by log posterior probability at given sample’s
cellularity as predicted by Sequenza from WGS data (representative mouse #7
and #8. f) Chromosome counts in RCC SM-GEMM-derived short-term cultures.
Malignant cells are characterized by prominent polyploidy, data are represented

as median values, minimum, maximum (M#7:72, 42, 85; M#1: 60, 48, 84; M#8: 58,
55,94; M#3:52, 50, 78; M#5: 54,40, 80; M#4: 58, 44, 64) with boundaries at the
25thand 75th percentile (N = 5/line tested). g) Costaining of chromosomes (DAPI)
and centromeres in representative nuclei of metaphase short-term cultures,
established from Nf2KO-Setd2KO-Trp53K0-4q9p21 tumor-bearing mice. Images
representative of N = 2 experiments. h) Comparison of primary tumor sample
and matched normal B-allele frequencies (BAF) of heterozygous SNPs derived
from WGS in the matched normal tissue sample (0.2 < normal sample SNP

BAF < 0.8). The analysis was performed on chromosomes undergoing gains (5q,
11q) or losses (12q,16q). A copy-neutral chromosome was used as control (6q).
Correlation of SNP BAFs between tumor and matched normal samples. The BAFs
of heterozygous SNPs suggest that WGD precedes somatic CNVs. Error bars
represent the standard deviation of technical replicates. Scale bar: 100 pm.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | sScRNA sequencing characterization of GEKOs.

a) Microscopic representative pictures of GEKOs 10 weeks after AAV transduction
for the three different experimental groups. Images representative of N =3
experiments (left: brightfield; right: tdTomato). b) Bi-dimensional cluster
distribution of the 87718 GEKOs cells after filtering and quality control
distributed ona UMAP plot. c-d) Cell cycle status and group distribution of
single GEKOs cells as calculated by Seurat (c) and violin plot of Cell cycle score
values (d), p <1*10-15, for the 3 different experimental groups. N = 87718 cells.

e) Ridge plots of representing the distribution of single cells along a calculated

EMT signature (EMT Score). f) Copy number heatmap of representative samples
of the Normal, Nf2KO-Setd2KO and Nf2KO-Setd2KO-4q9p21 experimental
groups generated by InferCNV; CIN can be appreciated in the Nf2KO-Setd2KO-
4q9p21with recurrent CNA patterns. g) Heatmap showing upregulated and
downregulated modules as calculated by Moncole3 in the 4 distinct genomic
groups. A clear difference among modules canbe appreciated between
16qeuploid and 16q-. h) Over representation pathway analysis of top markers
calculated by Seurat for the 16qeuploid (top panel) and 16q- (bottom panel) cell
lines. ****P < 0.0001 by Mann-Whitney test (d).
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Extended Data Fig. 7 | IFNRs are tumor suppressive in a cell autonomous
manner. a) Genome-Wide CRISPR Screen quality control via fold change
separation curves generated using a previously curated list of known essential
and non-essential genes. Comparison of the foldchange of guide level abundance
at 20 doublings to the reference timepoint reveals significant drop-out in the
essential genes and minimal drop out in the non-essential population, indicating
no change from the reference population. b) Colony forming unity assay

showing number of colonies after Ifnral or Ifngr2 knockouts with or without
Baricitinib treatment compared to parental untreated cells (left panel) and
representative images of the experiment (right panel), data are presented as
mean values +/-SD (N = 6 tumors per each condition), p values = 4.73*10-5,
0.0012,5.17*10-4,1.25*10-5,1.47*10-4. **** P < 0.0001 by two-way Anova with
Tukey’s multiple comparison (b).
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Extended Data Fig. 9 | Chromosome 21qloss and IFNR loss confer a pro-
tumorigenic and pro-metastatic phenotype in RCC. a) Survival curves of 16q-
tumor bearing mice with either knockout of Ifnar1, Ifngr2 or none (N =10 mice
per each condition). p value = 0.15 b-c) Clinicopathological assessment of tumor
dimension and number of metastasis, data are represented as median values,
minimum, maximum (sgCTR:135.75, 32, 600; sgifnarl: 144,13.5,1080; sglfngr2:
477.5,87.5,1080 for Tumor dimension and sgCTR: 19, 5, 42; sglfnarl: 20,10, 42;
sglfngr2: 24.5,12, 46 for number of metastasis) with boundaries at the 25th and
75th percentile (b) and immunohistochemical staining of IFINAR1and IFNGR2

in primary tumors at endpoint (c) for 16q- tumor bearing mice. (N =10 tumors
per each condition) d-e) Growth curves of 16qeuploid and 16q- cell lines upon
knock-out of Ifngr2 (N = 5 tumors per condition, d), p value = 0.065, and Ifnarl

(N =5tumors per condition, e). p = 5.84*10-6 after subcutaneous transplantation
inNOD-SCID mice, dataare presented as mean values +/- SD. f) Survival curves of
16qgeuploid and 16q- tumor bearing mice treated (N = 10 mice per each condition)
or not (N =10 mice) with Baricitinib, p = 5.08*10-6. ** P < 0.0L; ****P < 0.0001 by
two-way Anova (b,d,e) and log-rank (Mantel-Cox) test (a,f).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | An extra copy of the IFNR cluster is sufficient to
restrains malignant transformation in RCC. a) Confocal images of a GEKO
infected with Ad-Cas9-GFP. The positive staining with the renal marker PAX8
confirmed a tubular origin of this organoids; GFP staining confirmed the
successful transduction. Scale bar: 100pum b-c) Representative histopathological
images of “Wild type” and “Ts65Dn” GEKOs cotransduced with sgRNAs-carrying
AAV and Ad-Cas9-GFP stained for the proliferation marker Ki67 (b) and relative
quantification (c), data are presented as mean values +/- SD, p value = 3.17*10-
6.Scalebar:100pm (N =15 for “Ts65Dn and N = 11 for “Wild type”) Images
representative of N = 2 experiments. d-e) Representative H&E images showing
sarcomatoid (left panel) and tubule-papillary like (right panel) morphology for
“Wild type” and “Ts65Dn” GEKO-derived tumors respectively (e); quantification
of “Ts65Dn” and “Wild type” GEKO-derived tumors with histological low grade

(G1/G2) and high grade (G3/G4), dataare presented as mean values +/-SD (N = 25
fields per each condition, p <1*10-15) (e). Scale bar: 100um f) Incidence curves
of tumor bearing mice transplanted with “Ts65Dn” or “Wild type” GEKOs and
treated with Vehicle or Baricitinib, p value = 4.47*10-6. g) Schematic showing the
generation of GEKTCs. h) Representative images of “Wild type” and “Ts65Dn”
GEKTCs stained for SA-Beta-Gal. Images representative of N = 3 experiments. I-j)
Survival curves of “Ts65Dn” (N = S5mice) and “Wild type” (N = 5 mice) GEKTC cell
lines transplanted inimmunocompromised mice and respective tumor growth
curve, data are presented as mean values +/- SD, p values = 0.0026,1.49*10-5

and 2.74*10-11 (j). Scale bar: 100pm. ** P < 0.01, *** P < 0.001, **** P < 0.0001

by student-T test (c) Chi test (e) log-rank (Mentel-Cox) test (f-i) and two-way
ANOVA (j).
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(cat. #9172, Cell Signaling Technology, 1:1000 dilution), H3 (cat. sc-517576, Santa Cruz Biotechnology, 1:1000 dilution); tubulin (cat
#T9026, Millipore-Sigma, 1:1000 dilution). AlexaFluor 488 Goat anti-Human IgG (dilution: 1:500 - cat. # A-11013, ThermoFisher). Anti-
centromere (SKU: 15-234 Antibodiesinc, dilution 1:250).
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Validation RFP MAS-15257 has successfully been used in immunoprecipitation, ELISA, Western blotting, immunohistochemistry,
im munocytochem istry and i mm unofluorescence applications (https://www.thermofisher.com/a ntibody /product/RF P-Anti body-
clone-RFSR-Monoclonal/MAS-15257); GFP 13970 has successfully been used for Western Blotting and immunofluorescence (https://
www.abcam.com/gfp-antibody-ab13970.html). Vimentin ab8978 has been successfully used for Western Blotting,
immunohistochemistry, immunofluorescence and Flow Cytometry (https://www.abcam.com/vimentin-antibody-rv202-cytoskeleton-
marker-ab8978.html); Pax8 10336-1-AP has been successfully used for Western Blotting, Immunohistochemistry and
Immunofluoresce (https://www.ptglab.com/products/PAX8-Antibody-10336-1-AP.htm#tested-applications). CD31 77699S has been
successfully used for Western Blotting, Immunohistochemistry, Immunofluorescence (https://www.cellsignal.com/products/ primary-
antibodies/cd31-pecam-1-d8v9e-xp-rabbit-mab/77699); Ki67 MAS-14520 has successfully used for Western Blotting,
immunohistochemistry, Immunofluorescence, Flow Cytometry (https://www.thermofisher.com/antibody/product/Ki-67-Antibody-
clone-SP6-Recombinant-Monoclonal/MA5-14520); cGAS 31659S has been successfully used for Western Blotting and
Immunoprecipitation ( https ://www. ce | | sign a |I. com/ products/ primary-anti bodies/ cgas-d 3080-ra b bit-ma b-mo use-speci
fic/31659). pY701STAT1 9167 has bee successfully used for Western Blotting, Immunoprecipitation, Immunohistochemistry, Flow
Cytometry
(https://www.cellsignal.com/products/primary-antibodies/phospho-statl-tyr701-58d6-rabbit-mab/9167); STA Tl 9172 has been
successfully used for Western Blotting, Immunoprecipitation, Immunohistochemistry, Flow Cytometry (https://www.cellsignal.com/
products/primary-antibodies/statl-antibody/9172); H3 sc-517576 has been successfully used for Western Blotting (https://
www.scbt.com/p/histone-h3-antibody-1g1); tubulin T9026 has been successfully used for Western Blotting (https://
www.sigmaaldrich.com/US/en/product/sigma/t9026).

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) 293T cell line was purchased by ATCC (CRL-3216). All other cell lines used in this work where generated in our lab from SM-
GEMM RCC model and they are available upon reasonable request by contacting the leasing author GG. 16q loss cell line was
derived from a male mouse. 16q euploid cell line was derived from a female mouse.

Authentication Cell lines were not authenticated from a third party, with the exception of the 293T (authentication with morphological
observation). Cell lines are available upon reasonable request by contacting the leading author GG.

Mycoplasma contamination Cells were tested for mycoplasma contamination at least once via PCR with negative results.

Commonly misidentified lines No commonly misidentified cell lines were used in this study
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The Pax8Cre strain was generated by Dr. Mein rad Busslinger and obtained through the Jackson Laboratory, Stock No: 028196. The
H11LSL-Cas9 strain was generated by Dr. Monte M. Winslow and obtained through the Jackson Laboratory, Stock No: 027632. The
Rosa26LSL-TdT was generated in Dr. Hongkui Zeng's laboratory and obtained through the Jackson Laboratory, Stock No: 007908. The
Rosa26fsf-Isl-TdTomato was generated in Hongkui Zeng's lab and obtained through the Jackson Laboratory, Stock No: 021875.
Rosa26LSL-Luc mice were generated by Dr. William G. Kaelin and obtained through the Jackson Laboratory, Stock No: 034320. The
Ts65Dn strain was generated by Dr. Muriel T Davisson and obtained through the Jackson Laboratory, Stock No: 001924. Strains were
kept in a mixed C57BL/6 and 129Sv/Jae background, except for the Ts65Dn that was kept in B6EIC3Sn background. Embryo collection




was performed at El 4. CBI 7SC-F SCID mice were purchased from Taconic. All mice allocated into experimental groups were between
4-6 weeks of age. Mice were kept at a 12 light/12 dark cycle is commonly used, housed at 18-23 degree Celsius and humidity of
50-60%. Maximal tumor burden was not exceeded according to the institutional review board guidelines.

Wild animals No wild animals were included in this study.
Reporting on sex No sex specific findings were reported.
Field-collected samples  No field-collected samples were used in this study.

Ethics oversight All animal studies and procedures were approved by the UTMDACC Institutional Animal Care and Use Committee. All experiments
conformed to the relevant regulatory standards and were overseen by the institutional review board. Maximal tumor burden was not
exceeded according to the institutional review board guidelines: for orthotopic tumors, mice were euthanized upon symptoms of
distress, for subcutaneous transplantations, maximal tumor burden was 2cm”3. No sex bias was introduced during the generation of
experimental cohorts.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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