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Abstract

IMPORTANCE Type 2 diabetes increases the risk of progressive diabetic kidney disease, but reliable
prediction tools that can be used in clinical practice and aid in patients’ understanding of disease
progression are currently lacking.

OBJECTIVE To develop and externally validate a model to predict future trajectories in estimated
glomerular filtration rate (eGFR) in adults with type 2 diabetes and chronic kidney disease using data
from 3 European multinational cohorts.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study used baseline and follow-up
information collected between February 2010 and December 2019 from 3 prospective multinational
cohort studies: PROVALID (Prospective Cohort Study in Patients with Type 2 Diabetes Mellitus for
Validation of Biomarkers), GCKD (German Chronic Kidney Disease), and DIACORE (Diabetes
Cohorte). A total of 4637 adult participants (aged 18-75 years) with type 2 diabetes and mildly to
moderately impaired kidney function (baseline eGFR of =30 mL/min/1.73 m?) were included. Data
were analyzed between June 30, 2021, and January 31, 2023.

MAIN OUTCOMES AND MEASURES Thirteen variables readily available from routine clinical care
visits (age, sex, body mass index; smoking status; hemoglobin A;. [mmol/mol and percentagel;
hemoglobin, and serum cholesterol levels; mean arterial pressure, urinary albumin-creatinine ratio,
and intake of glucose-lowering, blood-pressure lowering, or lipid-lowering medication) were selected
as predictors. Repeated eGFR measurements at baseline and follow-up visits were used as the
outcome. A linear mixed-effects model for repeated eGFR measurements at study entry up to the
last recorded follow-up visit (up to 5 years after baseline) was fit and externally validated.

RESULTS Among 4637 adults with type 2 diabetes and chronic kidney disease (mean [SD] age at
baseline, 63.5 [9.1] years; 2680 men [57.8%]; all of White race), 3323 participants from the
PROVALID and GCKD studies (mean [SD] age at baseline, 63.2 [9.3] years; 1864 men [56.1%]) were
included in the model development cohort, and 1314 participants from the DIACORE study (mean
[SD] age at baseline, 64.5 [8.3] years; 816 men [62.1%]) were included in the external validation
cohort, with a mean (SD) follow-up of 5.0 (0.6) years. Updating the random coefficient estimates
with baseline eGFR values yielded improved predictive performance, which was particularly evident
in the visual inspection of the calibration curve (calibration slope at 5 years: 1.09; 95% Cl, 1.04-1.15).
The prediction model had good discrimination in the validation cohort, with the lowest C statistic at 5
years after baseline (0.79; 95% Cl, 0.77-0.80). The model also had predictive accuracy, with an R?
ranging from 0.70 (95% Cl, 0.63-0.76) at year 1to 0.58 (95% Cl, 0.53-0.63) at year 5.
CONCLUSIONS AND RELEVANCE In this prognostic study, a reliable prediction model was
developed and externally validated; the robust model was well calibrated and capable of predicting
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Abstract (continued)

kidney function decline up to 5 years after baseline. The results and prediction model are publicly
available in an accompanying web-based application, which may open the way for improved
prediction of individual eGFR trajectories and disease progression.

JAMA Network Open. 2023;6(4):€231870. doi:10.1001/jamanetworkopen.2023.1870

Introduction

Chronic kidney disease (CKD) is one of the most common complications of diabetes, occurringin
approximately 40% of patients with type 2 diabetes."? Early awareness and identification of
individuals at risk of rapid progression are at the forefront of CKD prevention. The disease is
characterized by progressive loss of kidney function, which is assessed by sequential estimated
glomerular filtration rate (eGFR) and can vary substantially between individuals. Monitoring is
performed using noninvasive methods consisting of annual physical examinations, laboratory test
results, and determination of eGFR. A clinically useful prediction model of future eGFR
measurements based on these routinely collected clinical data may help clinicians guide and plan
preventive interventions as well as improve patient understanding and patient-physician
communication about the further course of kidney function decline.

Previous studies** that aimed to predict progressive loss of kidney function used an arbitrary
definition to create a binary outcome based on continuously measured eGFR, limiting the accuracy of
the prediction. Generally, prediction models focus on definitive kidney function end points (eg,
kidney replacement therapy),*'©
observed laboratory measurements, such as doubling of serum creatinine levels or eGFR slope-

even if these end points are artificially created based on repeatedly

based approaches quantifying yearly loss.”" For example, Gurudas et al'* defined the split for risk
classification as the latest of the first 2 eGFR measurements lower than 60 mL/min/1.73 m?, obtained
at least 3 months apart, to predict the risk of incident stage 3 CKD. More commonly, eGFR slope-
based approaches based on repeated eGFR recordings are used as proxies for annual estimated
decline in kidney function.' However, these end points are substantially less definitive in contrast to
kidney replacement therapy and are limited by the inter- and intraparticipant variability inherent to
eGFR readings as well as estimation accuracy that is dependent on the number of time points
available. Despite the known ambiguity in eGFR slope estimation and the benefits of continuous
monitoring of disease deterioration, prediction modeling for future eGFR values remains largely
overlooked.

We sought to optimally predict eGFR values at upcoming follow-up visits conditional on
baseline eGFR using linear mixed-effects modeling based on routine clinical care data from patients
with type 2 diabetes and CKD. We adopted the analysis strategy outlined by Gregorich et al,'® in
which baseline eGFR measurements are part of the outcome to be modeled and at application of the
model are used to compute posterior random slopes and intercepts for the eGFR trajectory. This
novel prediction model may allow patients and treating physicians to predict future kidney function
by using commonly available variables, including current eGFR. We also implemented a user-friendly
web-based application of the model to further facilitate the translation to clinical practice and aid in
patient understanding of disease progression.

Methods

This prognostic study used baseline and follow-up data collected between January 2010 and
December 2019 from 4637 participants in 3 European multinational prospective cohort studies:
PROVALID (Prospective Cohort Study in Patients with Type 2 Diabetes Mellitus for Validation of
Biomarkers),”” GCKD (German Chronic Kidney Disease),'® and DIACORE (Diabetes Cohorte).™ Data
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were analyzed between June 30, 2021, and January 31, 2023. For the current study, a detailed
description of the background of the study cohorts, inclusion and exclusion criteria, statistical
methods describing the computation of random-effect coefficients based on baseline information
for new individuals, validation procedures, and individual risk assessment of rapid kidney
deterioration was previously published in the study protocol.'® The PROVALID, GCKD, and DIACORE
studies all received approval from the responsible local institutional review boards in each
participating country. Written informed consent was required for participation in all 3 studies, and the
protocols and data protection strategies were also reviewed and approved by the appropriate ethics
committees and data protection officers. All of these studies were conducted in accordance with
the Declaration of Helsinki."”-2° Approval for the current study was covered by the approvals of the
ethics committees of the separate study cohorts. This study followed the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline
for prognostic studies.?'

Study Population

Development Cohort

The development cohort comprised participants from the PROVALID" and GCKD'® studies. Al
individuals underwent clinical assessment during follow-up visits (once every year in the PROVALID
study and once every 2 years in the GCKD study). Eligible individuals had type 2 diabetes and White
race (as stated in the database; all 3 studies had White race as an inclusion criterion because most
participants in a Europe-based cohort would be White), were aged 18 to 75 years, and had 3 or more
eGFR readings, at least 2 years of follow-up (to ensure stable estimation of eGFR trajectories), and
mildly to moderately impaired kidney function (baseline eGFR of =30 mL/min/1.73 m?). Due to the
low amount of missing data, only complete cases were considered, resulting in 3323 participants
(994 people from the GCKD study and 2329 people from the PROVALID study) (Figure 1). In the
initial GCKD sample, only individuals with type 2 diabetes were included. Recruitment for the

Figure 1. Overview of Study Design

1864 Participants GCKD ‘

‘ 3972 Participants PROVALID

Exclusion of participants if
717 <3 eGFR measurements
194 Baseline eGFR
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26 No baseline eGFR
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658 <3 eGFR measurements
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The numbers excluded sum to more than the the totals shown after exclusion because participants could be excluded based on more than 1 of the exclusion criteria listed. DIACORE
indicates Diabetes Cohort; eGFR, estimated glomerular filtration rate; GCKD, German Chronic Kidney Disease; and PROVALID, Prospective Cohort Study in Patients With Type 2
Diabetes Mellitus for Validation of Biomarkers.
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PROVALID and GCKD studies started in January 2010, with a mean (SD) follow up of 4.7 (1.5) years in
the PROVALID study and 5.6 (0.8) years in the GCKD study.

External Validation Cohort

Individuals within the DIACORE (Diabetes Cohorte) study'®?? comprised the external validation
cohort, which constituted a population that was generally comparable with individuals from the
PROVALID and GCKD studies. Criteria for patient eligibility in the validation cohort were the same as
those used for the development cohort, yielding 1314 people (Figure 1). In the DIACORE study,
enrollment was initiated in January 2010, with a mean (SD) follow-up of 5.1 (0.6) years.

Variables

Covariates

Candidate predictor variables were selected by medical expertise and availability in routine clinical
care visits and were only recorded at the individual's first study visit (baseline). The following 13
baseline predictors were included in the model: age, sex, body mass index (BMI; calculated as weight
in kilograms divided by height in meters squared), smoking status (never or ever), hemoglobin A,
level (mmol/mol and percentage), hemoglobin level (g/dL), serum cholesterol level (mg/dL), mean
arterial pressure, urinary albumin-creatinine ratio (mg/g), and intake of glucose-lowering, blood
pressure-lowering, or lipid-lowering medication (yes or no). Information about the composition of
medication classes is provided in eAppendix 9 in Supplement 1. Time of eGFR assessment since the
baseline visit was also included as a predictor in the model. The urinary albumin-creatinine ratio was
log,, transformed to reduce the impact of highly influential points.

Outcome

The primary outcome was repeated eGFR measurements recorded at baseline and follow-up visits.
The eGFR values were calculated using the Chronic Kidney Disease Epidemiology Collaboration
equation from 2021, which includes the person's sex, age, and serum creatinine level 232*

Statistical Analysis

Model Specification

To account for within-participant and between-participant variability, we modeled repeated eGFR
measurements over time using a multivariable linear mixed-effects model. We used fixed effects for
each candidate predictor and also included an interaction (product) term of each predictor with
time.2° Furthermore, we included random intercepts and a random coefficient for time (random
slopes) for individuals and used an unstructured covariance-variance matrix. In addition, we
accounted for country-specific differences in eGFR levels by nesting the individual-specific random
intercepts within countries. Conditional and marginal R? values were computed for the mixed-effects
model, corresponding to explained variation including the random effects (conditional R? values) or
excluding the random effects (marginal R? values).

Computation of Individual-Specific Random Effects by Baseline eGFR

In our modeling approach, baseline eGFR values were included in the response vector, and response
profiles were modeled by the predictor variables.?® In this way, baseline eGFR values contributed to
estimates of random variability (magnitude of measurement error) and changes in eGFR over time.
The model can be used to predict individual-specific response profiles, including baseline and
follow-up values; however, if baseline values are already known, they can be incorporated into the
prediction to increase the predictive accuracy for follow-up values (model equations are available in
eAppendix 4 in Supplement 1). For these reasons, we did not model the repeated measurements of
eGFR dynamically but only used the first available eGFR measurement (at baseline) of a new
individual to obtain updated individual-specific random effects of the model that would allow more
precise predictions of eGFR.
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Internal-External and External Validation

We used internal-external validation to evaluate the predictive ability of the model in the
development cohort using country as a nonrandom splitting unit, and we computed 95% Cls by the
bootstrap method.?” Calibration slopes, predicted R? values, and C statistics (eAppendix 5 in
Supplement 1) were determined based on predictions obtained after updating the random
coefficient estimates with baseline eGFR measurements. Using the same performance measures, we
evaluated the predictive capability of the final model in the external validation cohort. Moreover,
calibration of the final model in the external cohort was graphically assessed by plotting the observed
eGFR values against their predictions for each follow-up year. Details of the validation procedure and
the performance measures can be found in eAppendix 5 and eAppendix 8 in Supplement 1.

Estimation of eGFR Slopes and Predicted Probabilities of Rapid Decline
From the fitted and validated model, expected values and variances of individual-specific eGFR
slopes of kidney function were obtained by computing the derivative of the model equation with
respect to time and inserting the baseline eGFR value and predictor values into the derivative. The
probability of rapid progression was then computed by normal approximation using an eGFR
threshold of -3 mL/min/1.73 m? per year to differentiate between stable and rapid progression.
Specifically, the probability of rapid progression was reported as the value of the predictive
distribution function of the estimated slope at the chosen threshold.

All analyses were performed using R software, version 4.2.1 (R Foundation for Statistical
Computing). The shiny package for R software was used for implementation of the web application.

Results

Patient Characteristics and Measurements

Among 4637 adults with type 2 diabetes and CKD (mean [SD] age at baseline, 63.5 [9.1] years; 2680
men [57.8%] and 1957 women [42.2%)]; all of White race), 3323 individuals were included in the
development cohort (mean [SD] age at baseline, 63.2 [9.3] years; 1864 men [56.1%] and 1459
women [43.9%]), and 1314 individuals were included in the external validation cohort (mean [SD] age
at baseline, 64.5 [8.3] years; 816 men [62.1%] and 498 women [37.9%]). Additional baseline
characteristics stratified by study of origin (GCKD, PROVALID, or DIACORE) are shown in Table 1. The
mean (SD) baseline eGFR was 52.4 (15.6) mL/min/1.73 m? in the GCKD cohort, 89.6 (19.8) mL/min/
1.73 m? in the PROVALID cohort, and 81.2 (16.7) mL/min/1.73 m? in the DIACORE cohort. Pearson
correlation analysis did not reveal an association between any pair of independent variables
(eAppendix 3 in Supplement 1). The median rate of eGFR decline, estimated using individual-specific
linear regression analysis, was similar across cohorts (PROVALID: median [IQR], -1.45[-3.51t0 -0.23]
mL/min/1.73 m? per year; GCKD: median [IQR], -1.43 [-3.10 to 0.01] mL/min/1.73 m? per year;
DIACORE: median [IQR], -1.28 [-2.87 to —0.12] mL/min/1.73 m? per year). Availability of data points
per year of follow-up and eGFR distributions across years are shown in eAppendix 1and eAppendix 2
in Supplement 1.

Model Development and Internal-External Validation

Before updating the random effects coefficients using baseline eGFR values, the overall conditional
R?was 0.90, and the marginal R? was 0.20. The most important predictor was age, with a decrease in
marginal R? of 0.10 (95% Cl, 0.08-0.10) (eAppendix 7 in Supplement 1). The internally-externally
cross-validated performance measures of discrimination, calibration, and model fit, stratified by
follow-up year, are provided in Table 2. The time-specific predicted R? values ranged from 0.74 (95%
Cl, 0.59-0.84) at year 1to 0.47 (95% Cl, 0.25-0.68) at year 5, and the C statistic ranged from 0.84
(95% Cl, 0.78-0.88) at year 1to 0.75 (95% Cl, 0.67-0.82) at year 5, with lower values observed after
the first follow-up year.
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The standardized coefficients of the predictors’ main effect size estimates and their interactions

with time are shown in Figure 2. All variables except BMI, smoking status, mean arterial pressure,
serum cholesterol, glucose-lowering medication, and lipid-lowering medication were associated with
significant decreases in eGFR, with age having the greatest reduction (estimate, -0.30; 95% Cl,
-0.32to -0.28). However, the interaction effect of these 6 variables was associated with significant

decreases in eGFR (Figure 2). The magnitude of the standardized interaction effects was low

Table 1. Baseline Characteristics of Development and External Validation Cohorts

Participants, No. (%)

External validation

Development cohort cohort
GCKD study PROVALID study DIACORE study

Characteristic (n =994) (n=2329) (n=1314)
Demographic and clinical characteristics
Age, mean (SD), y 64.0(8.3) 62.8(9.7) 64.5(8.3)
Sex

Female 335(33.7) 1124 (48.3) 498 (37.9)

Male 659 (66.3) 1205 (51.7) 816 (62.1)
Ever smoked 618 (62.2) 1176 (50.5) 584 (44.4)
BMI, mean (SD) 32.3(5.8) 31.0(5.3) 31.0(5.3)
Medication

Glucose-lowering 785 (79.0) 2136 (91.7) 1141 (86.8)

Blood pressure-lowering 975 (98.1) 1849 (79.4) 1052 (80.1)

Lipid-lowering 639 (64.3) 1404 (60.3) 640 (48.7)
Laboratory measurements
Mean arterial pressure, mean (SD) 98.5(12.4) 99.1(10.7) 97.3(10.8)
Blood pressure, mean (SD), mm Hg

Systolic 141.3 (19.8) 136.9 (16.8) 139.1 (17.5)

Diastolic 77.1(11.2) 80.1(9.9) 76.3(9.8)
HbA, ., mean (SD), mmol/mol 55.6(11.2) 52.8(12.6) 51.0(10.8)
HbA, ., mean (SD), % 7.3(1.0) 7.0(1.2) 6.8 (1.0)
Serum cholesterol, mean (SD), mg/dL 200.1 (45.9) 186.2 (46.8) 203.5(42.4)
Hemoglobin, mean (SD), g/dL 13.7(1.6) 13.9(1.5) 14.4(1.2)
UACR, median (IQR), mg/g 37.1(8.0-280.1) 9.6 (4.3-26.5) 9.0 (4.5-24.4)
Log, UACR, mean (SD), mg/g 5.6 (3.0) 3.4(2.5) 3.6(1.9)
eGFR, mean (SD), mL/min/1.73 m? 52.4(15.6) 89.6 (19.8) 81.2(16.7)

Table 2. Measures of Prediction Model Performance and Validity

Follow-up year

Performance measure (95% CI)

R? value

C statistic

Calibration slope

Cross-validated

1 0.74 (0.59-0.84) 0.84 (0.78-0.88) 1.05 (0.88-1.16)
2 0.63 (0.50-0.77) 0.80(0.76-0.85) 1.01 (0.85-1.18)
3 0.59 (0.42-0.76) 0.80(0.74-0.85) 0.97 (0.74-1.20)
4 0.55(0.39-0.73) 0.77 (0.71-0.83) 0.98(0.72-1.22)
5 0.47 (0.25-0.68) 0.75(0.67-0.82) 0.88(0.60-1.12)
Externally validated

1° NA NA NA

2 0.70(0.63-0.76) 0.83(0.81-0.85) 1.10(1.02-1.17)
3 0.64 (0.58-0.70) 0.82(0.80-0.83) 1.11(1.06-1.16)
4 0.65 (0.58-0.72) 0.81(0.79-0.83) 1.13(1.06-1.21)
5 0.58 (0.53-0.63) 0.79(0.77-0.80) 1.09 (1.04-1.15)

Abbreviations: BMI, body mass index (calculated as
weight in kilograms divided by height in meters
squared); DIACORE, Diabetes Cohort; eGFR, estimated
glomerular filtration rate; GCKD, German Chronic
Kidney Disease; HbA,., hemoglobin A;.; PROVALID,
Prospective Cohort Study in Patients With Type 2
Diabetes Mellitus for Validation of Biomarkers; UACR,
urine albumin-creatinine ratio.

Abbreviation: NA, not available.

@ Estimated glomerular filtration rate measurements
were not obtained in the first follow-up year of the
DIACORE (Diabetes Cohort) study.
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compared with the main effect size estimates. Unstandardized coefficients and estimated variance
parameters are reported in eAppendix 6 in Supplement 1.

External Validation

In the external validation cohort, eGFR measurements were available from year 2 to year 5 after
baseline. The associated performance measures are reported in Table 2. To illustrate the dominant
role of baseline eGFR, we contrasted the calibration of our model before (left panel in Figure 3) and
after (right panel in Figure 3) the predictions. Overall, updating the random effects with baseline
eGFR yielded excellent agreement between the predicted and observed eGFR values in the
validation cohort, especially for early follow-up years. Furthermore, the externally validated R?
ranged from 0.70 (95% Cl, 0.63-0.76) at year 1to 0.58 (95% Cl, 0.53-0.63) at year 5. The C statistic
ranged from 0.83 (95% Cl, 0.81-0.85) at year 1to 0.79 (95% Cl, 0.77-0.80) at year 5. The calibration
slope was highest at follow-up year 4 (1.13; 95% Cl, 1.06-1.21) and lowest at follow-up year 5 (1.09;
95% Cl, 1.04-1.15), suggesting stable predictive capabilities of the model in unseen individuals (ie,
individuals the model has not been trained on). The assessment of time-specific calibration slopes
revealed an almost perfect calibration at up to 4 years after baseline and only minimal shrinkage at 5
years after baseline (Figure 3).

Web-Based Application

The prediction model for an individual's eGFR at future follow-up time points, visualization of model
results, and risk assessment for rapid progression was implemented as an online risk calculator.?®
The code for model development and validation without the data, and the code for the shiny app (for
R software) are openly available in the GitHub repository at BEAt-DKD_PredeGFR.2°

Discussion

In this prognostic study, we developed a robust and well-calibrated prediction model for kidney
function decline that was able to predict future eGFR values after baseline assessment in adults with
type 2 diabetes and early to moderately progressed CKD using 2 large European study cohorts.
External validation of the model based on the availability of routinely collected demographic and
clinical data revealed good predictive performance of kidney function decline up to 5 years after
baseline assessment. We addressed several common methodological limitations of prediction

Figure 2. Standardized Regression Coefficients of the Model

Main effect size Interaction effect size
Time - Time .
Age - Age -
Sex (female) —— Sex (female) 4
BMI - BMI -
Smoking (ever) i Smoking (ever) -
MAP - MAP
HbA,; - HbA,
Serum cholesterol - Serum cholesterol "
Hemoglobin - Hemoglobin -
log, UACR - log, UACR "
Glucose-lowering medicine — Glucose-lowering medicine -
Blood pressure-lowering medicine — Blood pressure-lowering medicine -
Lipid-lowering medicine —. Lipid-lowering medicine -
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Standardized model coefficients were used for continuous variables, and unstandardized model coefficients were used for binary variables. Each coefficient represents the difference
in predicted outcome per difference of 1SD for a continuous predictor or when comparing the 2 levels of a binary predictor. Whiskers represent 95% Cls. BMI indicates body mass
index (calculated as weight in kilograms divided by height in meters squared); MAP, mean arterial pressure; HbA,., hemoglobin A,_; and UACR, urine albumin-creatinine ratio.
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modeling studies, such as the lack of external validation, to ensure generalizability of application to
unseen cohorts”'93° and inclusion of predictors that are not routinely available in primary clinical
care visits (eg, genetic information and serum biomarkers).™>"32 For instance, Jiang et al*'
considered genetic covariates in addition to traditional covariates when investigating the association
between known genetic variants and eGFR trajectories. However, genome-wide genotyping is not
available in daily clinical practice and hence is not suitable for general use. Furthermore, the
incremental usefulness of molecular biomarkers in addition to traditional clinical predictors for
improved prediction is still under investigation.>>34 Therefore, we restricted the model to data
obtained in primary clinical care visits among individuals with CKD and type 2 diabetes.

Only 3 studies33>3® were found that focused on the development of a rigorous prediction
model using a sequence of repeated eGFR values as the outcome vector of interest. Khazaee et al*®
developed and validated an artificial neural network-based prediction model in a single-center study
cohort to predict future eGFR measurements for follow-up visits after kidney transplant. The
prediction model was further used to derive the risk of kidney function decline among transplant
recipients. However, in contrast to our study, kidney function was assessed in transplanted kidneys.
Similarly, the sequence of repeated eGFR values was also used as the outcome of interest in studies
by Mayer et al*® and Heinzel et al.3* However, the main objective of these 2 studies was to assess
the incremental predictive utility of a panel of protein measurements for kidney failure; therefore,

Figure 3. Change in Calibration When Updating Random Coefficients by Baseline Estimated Glomerular Filtration Rate (eGFR)

Before update After update
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Observed eGFR, mL/min/1.73 m2
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Comparison between predictions before and after updating the random coefficient estimates for baseline eGFR measurements from the validation cohort. Later time points are
indicated by lighter coloring. The 45° solid line starting at O indicates perfect agreement between the estimated and observed eGFR values.
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their models would not be applicable in the primary care setting, nor have they been validated
externally.

Strengths and Limitations

This study has several strengths. First, the study uses baseline eGFR values as part of the outcome
vector and not as a covariate. Baseline eGFR measurements are subject to the same measurement
errors as follow-up eGFR measurements; by including baseline measurements in the outcome vector,
we can account for and explicitly estimate these variabilities in the model. The mixed-effects
modeling method provides a straightforward approach to consider baseline values for predictions by
way of updating random effects, as observed in this study. Second, rather than selecting variables
based on observed associations with the outcome, we included a prespecified set of predictors in our
model based on their availability during routine primary care visits, which has repeatedly been
proposed as the preferred approach to model building.3”3® Third, we included these predictors, as
well as their interactions with follow-up time, as main outcomes to predict changes in kidney
function, even if this inclusion only marginally increased predictive accuracy. Fourth, the model was
internally-externally validated with 1000 bootstrap samples to obtain 95% Cls for the performance
measures in the development cohort, yielding good overall predictive performance and model fit.
Rigorous external validation in a large cohort further confirmed the generalizability of the model and
its stable predictive capabilities in terms of calibration and discrimination, suggesting an ability to
accurately predict future kidney function solely based on data from routine primary care visits.

Fifth, the web-based application provides a user-friendly prediction tool that can be used to
identify patients with high risk and rapid decline in kidney function for recruitment in prospective
clinical studies. Such assistance with patient selection can improve the quality of clinical trials by
ensuring that more patients with relevant conditions and fewer patients with nonrelevant conditions
are selected, thereby reducing the cost and duration of clinical trials. However, before the model can
be used as a basis for treatment decisions, it should undergo further prospective evaluation of the
benefits and harms of its application in an impact study.>® In addition, the web-based application
may help to combat the current lack of awareness regarding the process and speed of kidney
function decline in CKD by displaying the potential course of disease.

This study also has limitations. First, all 3 of the prospectively planned large-scale cohort studies
were conducted in European countries, which is the reason we used the Chronic Kidney Disease
Epidemiology Collaboration equation to estimate GFR.2* Future research could strengthen the
validity of this prediction model by including cohorts from additional countries. Second, creatinine
assays were not standardized across cohorts, which is a known issue that can introduce inherent
variability in clinical laboratory serum creatinine measurements; this issue was taken into account via
the estimation of country-specific random intercept terms in the model. Third, the availability of data
points grew sparser at later time points (eAppendix 2 in Supplement 1); hence, the accuracy of the
predictions decreased at later time points. Because of this issue, we limited the applicability of the
web-based implementation of the prediction model to a maximal time span of 5 years after the
baseline examination to ensure reliable predictions of eGFR. Fourth, the 3 prospective studies
included in our analyses started recruitment in 2010 and had a mean follow-up of approximately 5
years. Thus, medications that were approved for the treatment of CKD by regulatory authorities
shortly before or after 2010 and 2011 (such as sodium-glucose cotransporter 2 inhibitors,
nonsteroidal mineralocorticoid receptor antagonists, and glucagon-like peptide 1receptor agonists)
were either not available or not routinely used throughout the study periods. Renin angiotensin
aldosterone system blockade was quantitatively available only during the PROVALID study and was
therefore not included in the model.
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Conclusions

This prognostic study used a linear mixed-effects model to predict eGFR trajectories among adults
with type 2 diabetes and CKD; this model naturally circumvented the inherent issues related to eGFR
slope estimation and fully incorporated the observed data into model estimation. Despite its
complexity, the prediction model was robust, well calibrated, and suitable for implementationin a
web-based application, revealing the potential of a publicly available online tool that can be used by
patients, caregivers, and primary health care professionals to predict individual eGFR trajectories and
disease progression up to 5 years after baseline.

ARTICLE INFORMATION
Accepted for Publication: January 20, 2023.

Published: April 5, 2023. doi:10.1001/jamanetworkopen.2023.1870

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2023 Gregorich
M et al. JAMA Network Open.

Corresponding Author: Rainer Oberbauer, MD, PhD, Medical University of Vienna, Wahringer Giirtel 18-20,
A-1090 Vienna, Austria (rainer.oberbaver@meduniwien.ac.at).

Author Affiliations: Center for Medical Data Science, Section for Clinical Biometrics, Medical University of Vienna,
Vienna, Austria (Gregorich, Kammer, Heinze); Division of Nephrology and Dialysis, Department of Internal
Medicine Ill, Medical University of Vienna, Vienna, Austria (Gregorich, Kammer, Heinzel, Oberbauer); Department
of Nephrology, University of Regensburg, University Hospital Regensburg, Regensburg, Germany (Boger, Jung);
Department of Nephrology, Diabetology, and Rheumatology, Traunstein Hospital, Southeast Bavarian Clinics,
Traunstein, Germany (Boger, Jung); KfH Kidney Center Traunstein, Traunstein, Germany (Boger, Jung);
Department of Nephrology and Medical Intensive Care, Charité University Medicine Berlin, Berlin, Germany
(Eckardt); Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nirnberg,
Erlangen, Germany (Eckardt, Meiselbach); Department of Clinical Pharmacy and Pharmacology, University of
Groningen, University Medical Centre Groningen, Groningen, the Netherlands (Heerspink); Department of Internal
Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria (Mayer); Institute of
Medical Biometry, Informatics, and Epidemiology, University Hospital Bonn, Bonn, Germany (Schmid); Institute of
Genetic Epidemiology and Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and
Medical Center, University of Freiburg, Freiburg, Germany (Schultheiss).

Author Contributions: Dr Mayer had full access to all of the data in the study and takes responsibility for the
integrity of the data and the accuracy of the data analysis.

Concept and design: Gregorich, Kammer, Heinzel, Heerspink, Mayer, Heinze, Oberbauer.

Acquisition, analysis, or interpretation of data: Gregorich, Kammer, Heinzel, Boger, Eckardt, Jung, Mayer,
Meiselbach, Schmid, Schultheiss, Heinze, Oberbauer.

Drafting of the manuscript: Gregorich, Kammer, Heinzel, Oberbauer.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Gregorich, Kammer, Heinze.

Obtained funding: Boger, Eckardt, Oberbauer.

Administrative, technical, or material support: Heinzel, Boger, Heerspink, Mayer, Schultheiss.
Supervision: Heinzel, Heinze, Oberbauer.

Other - oversaw design and data collection: Meiselbach.

Conflict of Interest Disclosures: Dr Eckardt reported receiving grants from AstraZeneca, Bayer, CSL Vifor, and
Evotec during the conduct of the study and personal fees from Akebia Therapeutics, AstraZeneca, Bayer, Otsuka
Pharmaceutical Company, Retrophin (now Travere Therapeutics), and Sanofi Aventis outside the submitted work.
Dr Heerspink reported receiving grants from AstraZeneca, Janssen Pharmaceuticals, and Novo Nordisk and
personal fees from AstraZeneca, Bayer, Boehringer Ingelheim, Chinook Therapeutics, CSL Behring, Dimerix
Limited, Eli Lilly and Company, Gilead Sciences, Janssen Pharmaceuticals, Novo Nordisk, and Travere Therapeutics
outside the submitted work. Dr Schmid reported receiving grants from Travere Therapeutics outside the
submitted work. Dr Oberbauer reported receiving personal fees from AstraZeneca, CSL Vifor, and Hansa
Biopharma outside the submitted work. No other disclosures were reported.

[5 JAMA Network Open. 2023;6(4):e231870. doi:10.1001/jamanetworkopen.2023.1870 April 5,2023 10/13

Downloaded From: https://jamanetwor k.com/ on 04/24/2023


https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.1870&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.1870
https://jamanetwork.com/pages/cc-by-license-permissions/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.1870
mailto:rainer.oberbauer@meduniwien.ac.at

JAMA Network Open | Nephrology Prediction Model for Estimated Glomerular Filtration Rate

Funding/Support: This study was supported by grant 115974 from the IMI2 JU (Drs Boger, Eckardt, and
Oberbauer) and grant 01ZX1912B from the German Federal Ministry of Education and Research (Dr Schultheiss).
The IMI2 JU receives support from the European Union’s Horizon 2020 Research and Innovation Programme, the
European Federation of Pharmaceutical Industries and Associations, and the JDRF (formerly the Juvenile Diabetes
Foundation). The DIACORE study was supported by a grant from the KFH Foundation for Preventive Medicine (Dr
Boger). The GCKD study was supported by grant OIERO804 from the German Federal Ministry of Education and
Research and funding from the KFH Foundation for Preventive Medicine and corporate sponsors.

Role of the Funder/Sponsor: The funding organizations had no role in the design and conduct of the study;
collection, management, analysis, and interpretation of the data; preparation, review, or approval of the
manuscript; and decision to submit the manuscript for publication.

Disclaimer: Any dissemination of results reflects only the authors’ views; the IMI2 JU is not responsible for any use
that may be made of the information it contains.

Data Sharing Statement: See Supplement 2.

Additional Contributions: The authors gratefully acknowledge the contributions of Laszl6 Rosivall, MD, PhD, of
Semmelweis University; Prof Andrzej Wiecek, MD, of the Medical University of Silesia; and Patrick B. Mark, MD, of
the University of Glasgow in setting up the PROVALID study database. None of the contributors received financial
compensation outside of their normal salaries.

Additional Information: A full list of BEAt-DKD participants may be found at http://www.imi.europa.eu/projects-
results/project-factsheets/beat-dkd.

REFERENCES
1. Gheith O, Farouk N, Nampoory N, Halim MA, Al-Otaibi T. Diabetic kidney disease: world wide difference of
prevalence and risk factors. J Nephropharmacol. 2015;5(1):49-56.

2. DengY, LiN, WuY, et al. Global, regional, and national burden of diabetes-related chronic kidney disease from
1990 to 2019. Front Endocrinol (Lausanne). 2021;12:672350. doi:10.3389/fendo.2021.672350

3. ChulL, Bhogal SK, Lin P, et al. Awareness of diagnosis and treatment of chronic kidney disease in adults with
type 2 diabetes (AWARE-CKD in T2D). Can J Diabetes. 2022;46(5):464-472. doi:10.1016/].jcjd.2022.01.008

4. Hayes JF, Osborn DPJ, Francis E, et al. Prediction of individuals at high risk of chronic kidney disease during
treatment with lithium for bipolar disorder. BMC Med. 2021;19(1):99. doi:10.1186/512916-021-01964-z

5. Vigil A, Condés E, Camacho R, et al. Predictors of a rapid decline of renal function in patients with chronic kidney
disease referred to a nephrology outpatient clinic: a longitudinal study. Adv Nephrol. 2015;2015:657624. doi:10.1155/
2015/657624

6. TangriN, Stevens LA, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney
failure. JAMA. 2011;305(15):1553-1559. doi:10.1001/jama.2011.451

7. Ramspek CL, de Jong Y, Dekker FW, van Diepen M. Towards the best kidney failure prediction tool: a systematic
review and selection aid. Nephrol Dial Transplant. 2020;35(9):1527-1538. doi:10.1093/ndt/gfz018

8. Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of prognostic models: what,
why, how, when and where? Clin Kidney J. 2020;14(1):49-58. doi:10.1093/ckj/sfaa188

9. Zacharias HU, Altenbuchinger M, Schultheiss UT, et al; GCKD Investigators. A predictive model for progression
of CKD to kidney failure based on routine laboratory tests. Am J Kidney Dis. 2022;79(2):217-230. doi:10.1053/].
ajkd.2021.05.018

10. Johnson ES, Thorp ML, Platt RW, Smith DH. Predicting the risk of dialysis and transplant among patients with
CKD: a retrospective cohort study. Am J Kidney Dis. 2008;52(4):653-660. doi:10.1053/j.ajkd.2008.04.026

11. Lambers Heerspink HJ, Perkovic V, de Zeeuw D. Is doubling of serum creatinine a valid clinical ‘hard’ endpoint
in clinical nephrology trials? Nephron Clin Pract. 2011;119(3):c195-c199. doi:10.1159/000327614

12. Colombo M, McGurnaghan SJ, Blackbourn LAK, et al; Scottish Diabetes Research Network (SDRN) Type 1
Bioresource Investigators. Comparison of serum and urinary biomarker panels with albumin/creatinine ratio in the
prediction of renal function decline in type 1 diabetes. Diabetologia. 2020;63(4):788-798. doi:10.1007/s00125-
019-05081-8

13. Pavkov ME, Knowler WC, Lemley KV, Mason CC, Myers BD, Nelson RG. Early renal function decline in type 2
diabetes. Clin J Am Soc Nephrol. 2012;7(1):78-84. doi:10.2215/CJN.07610711

14. Gurudas S, Nugawela M, Prevost AT, et al; ORNATE India Study Group. Development and validation of
resource-driven risk prediction models for incident chronic kidney disease in type 2 diabetes. Sci Rep. 2021;11
(1):13654. doi:10.1038/s41598-021-93096-w

[5 JAMA Network Open. 2023;6(4):e231870. doi:10.1001/jamanetworkopen.2023.1870 April 5,2023 1/13

Downloaded From: https://jamanetwor k.com/ on 04/24/2023


https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.1870&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.1870
http://www.imi.europa.eu/projects-results/project-factsheets/beat-dkd
http://www.imi.europa.eu/projects-results/project-factsheets/beat-dkd
https://www.ncbi.nlm.nih.gov/pubmed/28197499
https://dx.doi.org/10.3389/fendo.2021.672350
https://dx.doi.org/10.1016/j.jcjd.2022.01.008
https://dx.doi.org/10.1186/s12916-021-01964-z
https://dx.doi.org/10.1155/2015/657624
https://dx.doi.org/10.1155/2015/657624
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2011.451&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.1870
https://dx.doi.org/10.1093/ndt/gfz018
https://dx.doi.org/10.1093/ckj/sfaa188
https://dx.doi.org/10.1053/j.ajkd.2021.05.018
https://dx.doi.org/10.1053/j.ajkd.2021.05.018
https://dx.doi.org/10.1053/j.ajkd.2008.04.026
https://dx.doi.org/10.1159/000327614
https://dx.doi.org/10.1007/s00125-019-05081-8
https://dx.doi.org/10.1007/s00125-019-05081-8
https://dx.doi.org/10.2215/CJN.07610711
https://dx.doi.org/10.1038/s41598-021-93096-w

JAMA Network Open | Nephrology Prediction Model for Estimated Glomerular Filtration Rate

15. Pena MJ, Heinzel A, Heinze G, et al. A panel of novel biomarkers representing different disease pathways
improves prediction of renal function decline in type 2 diabetes. PLoS One. 2015;10(5):e0120995. doi:10.1371/
journal.pone.0120995

16. Gregorich M, Heinzel A, Kammer M, et al. A prediction model for the decline in renal function in people with
type 2 diabetes mellitus: study protocol. Diagn Progn Res. 2021;5(1):19. doi:10.1186/s41512-021-00107-5

17. Eder S, Leierer J, Kerschbaum J, et al. A prospective cohort study in patients with type 2 diabetes mellitus for
validation of biomarkers (PROVALID)—study design and baseline characteristics. Kidney Blood Press Res. 2018;43
(1):181-190. doi:10.1159/000487500

18. Eckardt KU, Bérthlein B, Baid-Agrawal S, et al. The German Chronic Kidney Disease (GCKD) study: design and
methods. Nephrol Dial Transplant. 2012;27(4):1454-1460. doi:10.1093/ndt/gfr456

19. Dorhofer L, Lammert A, Krane V, et al; DIACORE Study Group. Study design of DIACORE (DIAbetes
COhoRtE)—a cohort study of patients with diabetes mellitus type 2. BMC Med Genet. 2013;14:25. doi:10.1186/1471-
2350-14-25

20. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical
research involving human subjects. JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053

21. Collins GS, Reitsma JB, Altman DG, Moons KGM; TRIPOD Group. Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Circulation. 2015;131(2):
211-219. doi:10.1161/CIRCULATIONAHA 114.014508

22. Rheinberger M, Jung B, Segiet T, et al. Poor risk factor control in outpatients with diabetes mellitus type 2 in
Germany: the DIAbetes COhoRtE (DIACORE) study. PLoS One. 2019;14(3):e0213157. doi:10.1371/journal.pone.
0213157

23. Inker LA, Eneanya ND, Coresh J, et al; Chronic Kidney Disease Epidemiology Collaboration. New creatinine-
and cystatin C-based equations to estimate GFR without race. N Engl J Med. 2021;385(19):1737-1749. doi:10.1056/
NEJMo0a2102953

24. Levey AS, Stevens LA, Schmid CH, et al; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new
equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-612. doi:10.7326/0003-4819-
150-9-200905050-00006

25. Heinze G, Christensen J, Haller MC. Modeling pulse wave velocity trajectories—challenges, opportunities, and
pitfalls. Kidney Int. 2022;101(3):459-462. doi:10.1016/.kint.2021.12.025

26. Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis. 2nd ed. John Wiley & Sons; 2011. doi:10.
1002/9781119513469

27. Steyerberg EW, Harrell FE Jr. Prediction models need appropriate internal, internal-external, and external
validation. J Clin Epidemiol. 2016;69:245-247. doi:10.1016/].jclinepi.2015.04.005

28. BEAt-DKD: web implementation of the prediction model for kidney function in individuals with type 2
diabetes mellitus. shinyapps; 2022. Accessed January 28, 2021. https://beatdkd.shinyapps.io/shiny

29. Gregorich M. Code for the development, validation and web implementation of the risk prediction calculator
within the BEAt-DKD project WP1 task 5. GitHub; 2022. Accessed January 28, 2023. https://github.com/mgregorich/
BEAt-DKD_PredeGFR

30. Keane WF, Zhang Z, Lyle PA, et al; RENAAL Study Investigators. Risk scores for predicting outcomes in patients
with type 2 diabetes and nephropathy: the RENAAL study. Clin J Am Soc Nephrol. 2006;1(4):761-767. doi:10.2215/
CJN.01381005

31. Jiang G, Luk AQY, Tam CHT, et al; Hong Kong Diabetes Register TRS Study Group. Progression of diabetic
kidney disease and trajectory of kidney function decline in Chinese patients with type 2 diabetes. Kidney Int. 2019;
95(1):178-187. doi:10.1016/j.kint.2018.08.026

32. Rodriguez-Ortiz ME, Pontillo C, Rodriguez M, Ziirbig P, Mischak H, Ortiz A. Novel urinary biomarkers for
improved prediction of progressive eGFR loss in early chronic kidney disease stages and in high risk individuals
without chronic kidney disease. Sci Rep. 2018;8(1):15940. doi:10.1038/s41598-018-34386-8

33. Heinzel A, Kammer M, Mayer G, et al; BEAt-DKD Consortium. Validation of plasma biomarker candidates for
the prediction of eGFR decline in patients with type 2 diabetes. Diabetes Care. 2018;41(9):1947-1954. doi:10.2337/
dc18-0532

34. Kammer M, Heinzel A, Willency JA, et al; BEAt-DKD Consortium. Integrative analysis of prognostic biomarkers
derived from multiomics panels helps discrimination of chronic kidney disease trajectories in people with type 2
diabetes. Kidney Int. 2019;96(6):1381-1388. doi:10.1016/j.kint.2019.07.025

[5 JAMA Network Open. 2023;6(4):e231870. doi:10.1001/jamanetworkopen.2023.1870 April 5,2023 12/13

Downloaded From: https://jamanetwor k.com/ on 04/24/2023


https://dx.doi.org/10.1371/journal.pone.0120995
https://dx.doi.org/10.1371/journal.pone.0120995
https://dx.doi.org/10.1186/s41512-021-00107-5
https://dx.doi.org/10.1159/000487500
https://dx.doi.org/10.1093/ndt/gfr456
https://dx.doi.org/10.1186/1471-2350-14-25
https://dx.doi.org/10.1186/1471-2350-14-25
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.281053&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.1870
https://dx.doi.org/10.1161/CIRCULATIONAHA.114.014508
https://dx.doi.org/10.1371/journal.pone.0213157
https://dx.doi.org/10.1371/journal.pone.0213157
https://dx.doi.org/10.1056/NEJMoa2102953
https://dx.doi.org/10.1056/NEJMoa2102953
https://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006
https://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006
https://dx.doi.org/10.1016/j.kint.2021.12.025
https://dx.doi.org/10.1002/9781119513469
https://dx.doi.org/10.1002/9781119513469
https://dx.doi.org/10.1016/j.jclinepi.2015.04.005
https://beatdkd.shinyapps.io/shiny
https://github.com/mgregorich/BEAt-DKD_PredeGFR
https://github.com/mgregorich/BEAt-DKD_PredeGFR
https://dx.doi.org/10.2215/CJN.01381005
https://dx.doi.org/10.2215/CJN.01381005
https://dx.doi.org/10.1016/j.kint.2018.08.026
https://dx.doi.org/10.1038/s41598-018-34386-8
https://dx.doi.org/10.2337/dc18-0532
https://dx.doi.org/10.2337/dc18-0532
https://dx.doi.org/10.1016/j.kint.2019.07.025

JAMA Network Open | Nephrology Prediction Model for Estimated Glomerular Filtration Rate

35. Rashidi Khazaee P, Bagherzadeh J, Niazkhani Z, Pirnejad H. A dynamic model for predicting graft function in
kidney recipients’ upcoming follow up visits: a clinical application of artificial neural network. Int J Med Inform.
2018;119:125-133. doi:10.1016/j.ijmedinf.2018.09.012

36. Mayer G, Heerspink HJL, Aschauer C, et al; SYSKID Consortium. Systems biology-derived biomarkers to
predict progression of renal function decline in type 2 diabetes. Diabetes Care. 2017;40(3):391-397. doi:10.2337/
dc16-2202

37. Heinze G, Dunkler D. Five myths about variable selection. Transpl Int. 2017;30(1):6-10. doi:10.1111/tri.12895
38. Harrell FE Jr. Regression Modeling Strategies. 2nd ed. Springer; 2015. doi:10.1007/978-3-319-19425-7

39. Kappen TH, van Klei WA, van Wolfswinkel L, Kalkman CJ, Vergouwe Y, Moons KGM. Evaluating the impact of
prediction models: lessons learned, challenges, and recommendations. Diagn Progn Res. 2018;2:11. doi:10.1186/
s41512-018-0033-6

SUPPLEMENT 1.

eAppendix 1. Data Availability

eAppendix 2. Distribution of Data Points Across Follow-up
eAppendix 3. Correlation Between Predictors

eAppendix 4. Prediction Model Equation

eAppendix 5. Extended Statistical Methods

eAppendix 6. Fixed-Effect Coefficients and Their Time Interactions in the Prediction Model
eAppendix 7. Partial R? Coefficients

eAppendix 8. Model Comparison

eAppendix 9. Composition of Medication Classes
eReferences

SUPPLEMENT 2.
Data Sharing Statement

[5 JAMA Network Open. 2023;6(4):e231870. doi:10.1001/jamanetworkopen.2023.1870 April 5,2023 13/13

Downloaded From: https://jamanetwor k.com/ on 04/24/2023


https://dx.doi.org/10.1016/j.ijmedinf.2018.09.012
https://dx.doi.org/10.2337/dc16-2202
https://dx.doi.org/10.2337/dc16-2202
https://dx.doi.org/10.1111/tri.12895
https://dx.doi.org/10.1007/978-3-319-19425-7
https://dx.doi.org/10.1186/s41512-018-0033-6
https://dx.doi.org/10.1186/s41512-018-0033-6

