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The high global prevalence of depression, together with the recent acceleration of remote care owing
to the COVID-19 pandemic, has prompted increased interest in the efficacy of digital interventions for
the treatment of depression. We provide a summary of the latest evidence base for digital interventions
in the treatment of depression based on the largest study sample to date. A systematic literature search
identified 83 studies (N = 15,530) that randomly allocated participants to a digital intervention for
depression versus an active or inactive control condition. Overall heterogeneity was very high (° =
84%). Using a random-effects multilevel metaregression model, we found a significant medium overall
effect size of digital interventions compared with all control conditions (g = .52). Subgroup analyses
revealed significant differences between interventions and different control conditions (WLC: g = .70;
attention: g = .36; TAU: g = .31), significantly higher effect sizes in interventions that involved human
therapeutic guidance (g = .63) compared with self-help interventions (g = .34), and significantly lower
effect sizes for effectiveness trials (g = .30) compared with efficacy trials (g = .59). We found no signifi-
cant difference in outcomes between smartphone-based apps and computer- and Internet-based interven-
tions and no significant difference between human-guided digital interventions and face-to-face
psychotherapy for depression, although the number of studies in both comparisons was low. Findings
from the current meta-analysis provide evidence for the efficacy and effectiveness of digital interven-
tions for the treatment of depression for a variety of populations. However, reported effect sizes may be
exaggerated because of publication bias, and compliance with digital interventions outside of highly
controlled settings remains a significant challenge.

Public Significance Statement

This meta-analysis demonstrates the efficacy of digital interventions in the treatment of depression
for a variety of populations. Additionally, it highlights that digital interventions may have a valuable
role to play in routine care, most notably when accompanied by human guidance. However, compli-
ance with digital interventions remains a major challenge, with little more than 50% of participants
completing the full intervention on average.
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Depression is one of the leading causes of disability worldwide,
estimated to affect more than 300 million people globally each
year (World Health Organization, 2017). Depression has been
identified as a risk factor for many chronic health conditions
(Krishnan et al., 2002), is associated with poor quality of life
(Saarni et al., 2007), and has a significant burden of fatal and non-
fatal disease (Jia et al., 2015) and substantial societal and eco-
nomic costs (Greenberg & Birnbaum, 2005).

It is well established that psychotherapy is effective in the treat-
ment of depression for a variety of populations and across a num-
ber of settings (Barth et al., 2013; Cuijpers, Karyotaki, et al.,
2020; Cuijpers, Quero, Dowrick, et al., 2019; Zhou et al., 2015).
Psychotherapy has been proven to be as effective as antidepres-
sants for patients with mild to moderate depression (Campbell et
al., 2013; Cuijpers, Noma, et al., 2020) and is the preferred first
line of treatment for depression for the majority of patients
(McHugh et al., 2013; McManus et al., 2016). Psychotherapy may
also be more effective than medication in the longer term (Karyo-
taki et al., 2016). However, despite the demonstrated efficacy,
many people remain untreated (Herrman et al., 2019; James et al.,
2018). The ability to access psychotherapy is a major challenge in
most countries. Barriers include the low availability of trained
health care providers, high treatment costs, and stigma (Patel et
al., 2011; Saraceno et al., 2007; World Health Organization,
2011).

The coronavirus pandemic 2019 (COVID-19) has exacerbated
these challenges further. Early evidence suggests that a “parallel
mental health curve” may be developing, as the incidence of men-
tal health conditions, including depression, has risen significantly
since the start of the pandemic (Jacobson et al., 2020; Kola et al.,
2021; Pan et al., 2021; Pierce et al., 2020). Moreover, as govern-
ments across the world deploy widespread measures intended to
reduce the incidence of the virus—including restrictions on indi-
vidual movement and social interaction—many clinicians and
patients are no longer able to meet face-to-face, prompting an
urgent need for researchers and clinicians to find novel methods of
delivering evidence-based mental health care. Digital interventions
have been proposed as a viable solution to meet this need (Torous,
Myrick, et al., 2020). With more than 59% of the global popula-
tion now able to access to the Internet (Worldwide Digital Popula-
tion as of April 2020, n.d.), digital interventions may offer highly
scalable solutions for the delivery of evidence-based treatments
without the need for meeting in-person.

In addition to improving access to health care, digital interven-
tions may also help answer the question of what makes psycho-
therapy work. Unlike in face-to-face therapy, where treatment may
vary and therapists may “drift” away from the treatment protocol
(Waller, 2009), the highly standardized nature of digital interven-
tions allows for the manipulation of individual mediators while
controlling for others. With the ability to capture detailed data
related to every event (e.g., the therapeutic content delivered, par-
ticipant interactions, and proximal outcomes), digital interventions
may provide researchers with a new experimental paradigm to

better understand the mechanisms of change in psychotherapy
(Dombhardt et al., 2019; Domhardt, Steubl, et al., 2021; Holmes et
al., 2018). Such data can then be analyzed to inform treatment de-
velopment and delivery that may also provide valuable insights for
the amelioration of face-to-face therapy itself (Bateup et al., 2020;
Domhardt, Cuijpers, et al., 2021). Furthermore, the ability to
include large sample sizes with relatively little effort enables
researchers to conduct sufficiently powered trials to detect the
small effect sizes likely in studies on individual components and
mediators of change (Cuijpers, Cristea, et al., 2019; Dombhardt,
Steubl, et al., 2021).

Finally, because digital interventions are well-positioned to le-
verage the latest advances in technology such as smartphones,
wearable devices, and artificial intelligence (Baumeister & Mon-
tag, 2019; Fulmer et al., 2018; Mohr, Zhang, et al., 2017), they
may also accelerate the development of treatment formats targeted
at the individual. For example, smartphone-delivered ecological
momentary assessment (where an individual reports on their
behaviors, cognitions, and symptoms in real-time in their natural
environment), and digital phenotyping approaches (where digital
traces of individuals’ daily life are passively tracked) may be used
to generate personalized models of psychopathology by providing
data related to individual symptom networks and how the relation-
ship between symptoms evolve over time at the intraindividual
level (Insel, 2017; McNally, 2016; Montag et al., 2020; Robinaugh
et al., 2020; Wichers, 2014). Such information can then be used to
tailor interventions toward specific symptoms that hold the great-
est importance in the network, thereby allowing us to move closer
to the promise of precision medicine in psychotherapy (Blanken et
al., 2020; Firth et al., 2017; Nahum-Shani et al., 2018).

What Are Digital Interventions?

Emerging in the late 1980s (Ghosh et al., 1988), the first ver-
sions of digital interventions were little more than a therapeutic
manual delivered on a computer via a CD-ROM (Selmi et al.,
1990). With the development and widespread adoption of the
Internet in the 1990s, interventions have evolved considerably to
embrace the latest developments in technology (Andersson, 2016;
Andersson et al., 2019), with smartphone-delivered interventions
now becoming one of the most popular methods of accessing care
(Linardon et al., 2019; Weisel et al., 2019).

Although formats vary considerably, digital interventions typi-
cally require patients to login to a software program, website, or
app to read, watch, listen to, and interact with content structured as
a series of modules or lessons (Andersson, 2018; Ebert et al.,
2018). Individuals often receive homework assignments relating
to the modules and regularly complete digitally-administered
questionnaires relevant to their presenting problems, allowing
clinicians to monitor their progress and outcomes in cases in
which digital interventions comprise human support (Andersson et
al., 2009; Singla et al., 2018).
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Digital interventions may offer a number of potential advan-
tages over traditional face-to-face therapy. First, the ability for
patients to access interventions at any time and from anywhere
with an Internet connection significantly lowers the barrier to
access (Ebert et al., 2018). Second, the relative anonymity of digi-
tal interventions might lower the stigma around receiving profes-
sional treatment for depression. Third, the time savings associated
with digital interventions may enable health care providers to
increase the delivery of therapy and reduce wait-list times, making
it a highly scalable and potentially more cost-effective form of
therapy (Hedman et al., 2012; Kraepelien et al., 2018; Paganini et
al., 2018; Richards et al., 2020; Singla et al., 2018; Titov et al.,
2018; Titov, Dear, Staples, Bennett-Levy, et al., 2015).

Over the past 30 years, digital interventions have been devel-
oped and tested for a range of mental disorders, the most com-
mon of which are anxiety and depression disorders (Andersson
et al., 2019; Ebert et al., 2018; Konigbauer et al., 2017). Inter-
ventions have employed a variety of therapeutic approaches—
from cognitive behavioral therapy (CBT; Andersson, 2009) to
acceptance and commitment therapy (ACT; Brown et al., 2016),
psychodynamic approaches (Johansson et al., 2013), and inter-
personal psychotherapy (Donker, Bennett, et al., 2013). Digital
interventions have also been investigated in the treatment of
people with depressive symptoms and comorbid somatic condi-
tions (Bendig et al., 2018), including diabetes (Ebert et al.,
2017; Newby et al., 2017; Nobis et al., 2015), musculoskeletal
diseases (Baumeister et al., 2021; O’Moore et al., 2018; Sander,
Paganini et al., 2020), and epilepsy (Meyer et al., 2019). As
depression and (chronic) somatic conditions frequently co-occur
—leading to substantial adverse effects for patients, including
poor treatment compliance, increased symptom burden, addi-
tional medical complications and higher treatment costs (Barnett
et al., 2012; Goldberg, 2010)—digital interventions may pro-
vide an adjunctive psychotherapeutic measure to address the
interdependency of physical and mental conditions and improve
the continuity of care in cases where specially trained health
care practitioners may not be readily available (Fineberg, 2012;
Shrank et al., 2019; Singla et al., 2018).

The Efficacy of Digital Interventions

Hundreds of randomized controlled trials (RCTs) and a growing
number of effectiveness studies (Andersson & Hedman, 2013; Hed-
man et al., 2014; Johansson, Bjérehed, et al., 2019; Titov, Dear,
Staples, Bennett-Levy, et al., 2015) and meta-analyses have been
published demonstrating the efficacy of digital interventions for
various mental disorders (Andersson & Cuijpers, 2009; Cuijpers et
al., 2013; Cuijpers, Andersson, et al., 2011; Karyotaki et al., 2017;
2018; Konigbauer et al., 2017; Spek et al., 2007). Meta-analyses on
digital interventions for depression have reported pooled standar-
dized mean differences (SMDs) ranging from .32 (Spek et al.,
2007) to .90 (Konigbauer et al., 2017) for interventions compared
with placebo, treatment as usual, and wait-list control, with benefits
maintained at both 3—6 months (g = .15) and 9-18 months follow-
up (g = .22; Andrews et al., 2018; see Table 1 for a summary of
prior meta-analyses on digital interventions for depression).

A particularly important comparison for digital interventions is
with face-to-face therapy. Although theoretical models of psycho-
therapy have proposed that a face-to-face therapist is required for

large treatment effects (Wampold, 2001)—and, indeed, many
practitioners hold the same belief (Topooco et al., 2017)—recent
research suggests that there may be no significant difference in
outcomes between the two treatment formats (Cuijpers, Noma, et
al., 2020). A meta-analysis by Carlbring et al. (2018) comparing
Internet-based CBT with face-to-face therapy for depression dem-
onstrated that there was no significant difference in the average
effect sizes between the two formats when digital interventions are
accompanied by some form of remote human guidance. However,
the aforementioned meta-analysis may have been limited by sev-
eral sources of heterogeneity as studies targeting a wide range of
mental disorders across all control types and including both indi-
vidual face-to-face and group-based therapy were pooled together.
Furthermore, sample sizes of many of the included studies may
have been too small to detect differences in comparative or nonin-
feriority trials. Another challenge in establishing noninferiority is
that the interventions themselves are often substantially different.
Digital interventions are typically brief, structured interventions
with a limited set of treatment components, whereas face-to-face
therapy is often significantly broader in scope, containing a wider
variety of specific and nonspecific therapeutic factors. Given the
substantial difference in amount of therapist time required to deliver
face-to-face therapy compared with digital interventions (7.8 times
the amount, according to the meta-analysis by Andrews et al. (2018)
and the ability for digital interventions to scale the delivery of care
outside of in-person settings, robust studies establishing noninferior-
ity thus have major clinical and practical implications on meeting
the treatment gap in mental health care.

Another important consideration regarding digital interventions
is the efficacy of smartphone-based applications (apps). Over the
past decade the number of smartphone apps available for down-
load has proliferated, with a recent count identifying more than
10,000 apps for mental health alone (Torous et al., 2018). Smart-
phone apps may offer a number of advantages over computer- and
Internet-based interventions, including the ability to monitor
symptoms in real-time and in situ as well as providing automated
notifications for fostering greater intervention adherence. At the
same time, smartphone sensors may be used to facilitate the col-
lection of additional data sources related to the individual and their
environment (e.g., GPS data related to movement, physical activ-
ity and sleep; Mohr, Zhang, et al., 2017; Moshe et al., 2021). Yet,
despite their growing availability and potential, a number of con-
cerns have been raised over the lack of evidence-base supporting
these apps (Larsen et al., 2019). A review of smartphone apps for
mental health by Weisel and colleagues (2019) revealed only 19
published RCTs covering a heterogenous set of several mental dis-
orders (depression, anxiety, substance use, self-injurious thoughts
and behaviors, PTSD, and sleep problems) and only one study
with an overall low risk of bias. Only one trial in the meta-analysis
demonstrated the efficacy of an app-based intervention for depres-
sion as the primary outcome, but the trial was affected by an attri-
tion rate of 74% at posttest (Roepke et al., 2015). A meta-analytic
review by Firth et al. (2017) identified 18 RCTs for depression
and found that smartphone apps led to a greater reduction in
depressive symptoms (g = .38) when compared with a combina-
tion of active control conditions (including attentional control con-
ditions, in-person interventions, other forms of patient contact and
pharmacotherapy) and inactive control conditions (where partici-
pants received no intervention during the trial period or were put
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into a waitlist until pre- and postmeasures were collected). A more
recent review by Linardon et al. (2019) found that smartphone-
based interventions significantly outperformed control conditions
in improving depressive symptoms when active and inactive con-
trol conditions were combined (g = .28), yet no significant differ-
ence was found when smartphone apps were compared against
active control conditions alone. However, both of the aforemen-
tioned meta-analyses included studies and interventions not pri-
marily targeting depression (e.g., cognitive training apps, anxiety
symptoms, or mental health in general), as well as including sam-
ples with and without clinically relevant symptomatology and
without relevant cut-off-scores for depressive disorders. As such,
the effect of smartphone apps on individuals with elevated levels
of depression symptoms remains unclear, as does the effectiveness
of smartphone-apps in real-world settings.

Factors Influencing Outcomes of Digital Interventions

As the field has developed over the past decades, an increasing
number of studies have examined factors influencing the efficacy of
digital interventions. Researchers have identified a broad range of fac-
tors moderating outcomes related to (a) participant characteristics, (b)
human support, (c) compliance, and (d) study design and quality.

Participant Characteristics

Knowing which participant characteristics determine the out-
come of a specific treatment type is crucial if we are to match
patients with the right treatments and optimize both efficacy and
the efficiency of implementing interventions in the community
(Cuijpers et al., 2012; Donker, Batterham, et al., 2013). Although
numerous studies have investigated the relationship between indi-
vidual characteristics such as gender, marital status and education
level on intervention outcomes, findings here have been inconsis-
tent and inconclusive (Andersson, 2016; Button et al., 2012;
Donker, Batterham, et al., 2013; Spek et al., 2008; Warmerdam et
al., 2013). One reason for this may be that RCTs are typically
designed to detect overall treatment effects and are underpowered
to adequately conduct subgroup and moderator analyses (Brookes
et al., 2004). Indeed, meta-analyses using individual participant
data (IPD), which provide superior power to detect real differences
between subgroups (Cooper & Patall, 2009), have found no effect
of gender or education level in moderating the outcomes of digital
interventions for depression (Karyotaki et al., 2017; Karyotaki,
Ebert, et al., 2018).

Only a few studies have been conducted analyzing the efficacy
of digital interventions in specific age groups. In one of the first
reviews of Internet- and computer-based cognitive behavioral ther-
apy for anxiety and depression in youth, Ebert et al. (2015)
reported significant medium-to-large effect sizes (d = .76) for chil-
dren, adolescents, and young adults (ages 13-25) when compared
with trials with varying control conditions. However, a larger and
more recent meta-analysis by Garrido et al. (2019) found only a
small effect size for digital interventions compared with inactive
control conditions in young people aged 12-25 (d = .33) and no
significant difference when interventions were compared with
active control conditions. Furthermore, only digital interventions
that included regular guidance resulted in moderate effect sizes
when compared with inactive control conditions, whereas self-
guided interventions were not found to be effective.

Results from studies on digital interventions for the treatment of
depression in older adults suggest that digital interventions are
effective for this age group. A large RCT of more than 400 partici-
pants by Titov and colleagues (2016) that compared a guided ver-
sus unguided Internet-based CBT intervention for the treatment of
anxiety and depression in older adults (aged 60 years and over)
found large reductions in symptoms of depression for participants in
both conditions at posttreatment and three-month follow-up. In an
IPD meta-analysis of guided Internet-based interventions for depres-
sion, Karyotaki, Ebert, et al. (2018) found that effects were greater
for older adults compared with younger adults, possibly because of
the higher levels of intervention compliance in older adults. Know-
ing whether digital interventions have comparable outcomes across
the life span or whether there is a similar trend toward interventions
being more effective in middle- to older-aged population as in psy-
chotherapy (Cuijpers, Karyotaki, et al., 2020) may help inform clini-
cians about the potential of such treatments for specific age groups.
Yet, to our knowledge, no meta-analysis of digital interventions for
depression has included studies for all age groups across the life span.

Finally, the question as to whether digital interventions are
effective for individuals across all levels of depression severity
also has important clinical implications. Several studies have
found better outcomes on Internet-based cognitive behavioral ther-
apy (iCBT) for depression for participants with higher baseline se-
verity relative to those with lower baseline symptom scores
(Button et al., 2012; Karyotaki et al., 2021; Spek et al., 2008; War-
merdam et al., 2013). An IPD meta-analysis of guided Internet-
based interventions for depression by Karyotaki, Ebert, et al.
(2018) found that adults with more severe depressive symptoms at
baseline were more likely to remit than those with lower depres-
sion severity, although the study did not find an association
between baseline severity and treatment response. Although most
clinical guidelines do not recommend digital interventions as a
first-line treatment for individuals with severe depression (NICE,
2017; “Practice Guideline for the Treatment of Patients with Major
Depressive Disorder (Revision). American Psychiatric Associa-
tion.,” 2000), further research would benefit from an understand-
ing whether digital interventions are indeed efficacious in the
treatment of individuals with high symptom severity.

Human Support

The role of human support or “guidance” is perhaps one of the
most widely researched components in digital interventions for
depression. Guided interventions refer to interventions that are pri-
marily based on self-help material but accompanied by some form
of minimal human guidance delivered via electronic means such as
chat or e-mail or via the telephone. Guidance may be related to the
therapeutic content itself (e.g., feedback on homework; commonly
referred to as ‘therapeutic guidance’) or focused on fostering com-
pliance (e.g., resolving technical issues related to the intervention or
sending reminders to complete intervention modules; commonly
referred to as ‘technical’ or ‘motivational guidance’; Ebert et al.,
2018).

Several studies have demonstrated that guided interventions lead
to greater effect sizes than unguided interventions (Baumeister et
al., 2014; Cuijpers, Noma, et al., 2019; Karyotaki et al., 2019,
2021; Konigbauer et al., 2017; Wells et al., 2018). In one of the first
meta-analyses evaluating the effect of guidance in computer- and
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Internet-based interventions for depression, Richards and Richard-
son (2012) showed a metaregression effect size of d = .78 for inter-
ventions with therapeutic guidance, compared with d = .58 for
interventions with technical guidance and d = .36 for unguided
interventions. In contrast, Baumeister et al. (2014) found no signifi-
cant differences in effect size when investigating RCT's of Internet-
based interventions for depression that directly compared guided
versus unguided conditions in the same intervention. Yet, only three
studies were included in this subgroup analysis. Baseline depression
severity may also moderate the influence of guidance on outcomes.
In a large network meta-analysis using individual patient data from
39 studies of iCBT interventions for depression, Karyotaki and col-
leagues (2021) found that therapeutic guidance was associated with
little or no benefit in individuals with mild/subthreshold depression
while guided iCBT was associated with superior outcomes in indi-
viduals with moderate and severe depression. More recent research
has also raised the question as to whether the relative impact of
human guidance may be smaller when considering more recently-
developed interventions (Shim et al., 2017). Several studies have
suggested that “second-generation” self-help interventions that
include features specifically designed to improve engagement such
as e-mail reminders and responsive design, may produce benefits
similar to clinician-guided treatments (Dear et al., 2015, 2016;
Fogliati et al., 2016; Titov, Dear, Staples, Terides, et al., 2015).
However, there is little evidence from clinical trials comparing
technological guidance with human guidance, especially with
regards to engagement rates and outcomes in real-word settings.
Another important question relates to the qualification of the
person providing the guidance. Prior evidence suggests no differ-
ence in outcomes when digital interventions are supported by
trained clinicians and when they are supported by nonclinicians in
the treatment of individuals with mild-to-moderate symptom sever-
ity (Baumeister et al., 2014; Konigbauer et al., 2017; Richards &
Richardson, 2012; Shim et al., 2017). Such results have significant
implications on the public health potential of digital interventions
as it may reduce the need for licensed therapists, where availability
is already an acute problem in health care. Given the large number
of studies that have been published in recent years, we believe
there is a timely need for an updated meta-analytic review on guid-
ance that includes the latest studies, together with a thorough ex-
ploration of the influence of guidance in different subpopulations
(e.g., individuals with higher depression severity), and settings
(e.g., clinical vs. community) as well as an analysis of a possible
dose-response relationship between guidance and outcomes.

Compliance

One explanation for why guided interventions lead to better
therapeutic outcomes than unguided interventions is the higher
levels of compliance (often labeled as “adherence” in digital health
research) found in the former. Several studies have demonstrated
that guided interventions result in higher numbers of completed
modules and lower attrition compared with unguided interventions
(Baumeister et al., 2014; Donkin et al., 2011; Eysenbach, 2005;
Richards & Richardson, 2012). Furthermore, researchers have
found a strong dose-response relationship between session com-
pletion and effect size in digital interventions, making compliance
a critical factor in determining outcomes (Wright et al., 2019).
Yet, compliance and engagement with the intervention remains a

major challenge in digital interventions (Cuijpers, Noma, et al.,
2019; Yardley et al., 2016). One comparison between digital inter-
ventions versus face-to-face CBT revealed that the percentage of
individuals completing the whole intervention was significantly
lower in guided Internet-based CBT compared with face-to-face
CBT (65.1% vs. 84.7%). The challenge of intervention compliance
may be further exacerbated outside of controlled laboratory set-
tings (Baumel et al., 2019; Graham et al., 2019; Yardley et al.,
2016). In one large community-based study of an unguided inter-
vention involving 82,000 users, only 10% of participants com-
pleted more than one module (Batterham et al., 2008).

Why some participants comply with the intervention and others do
not is unclear. A number of factors have been shown to predict compli-
ance to digital interventions across participant characteristics (including
age, gender, lower education level and baseline severity; Christensen
et al., 2009; Donkin et al., 2011; Kok et al., 2017) and intervention
design (Kelders et al., 2012). Karyotaki et al. (2017) found that com-
pliance was lower in CBT-based interventions compared with inter-
ventions based on interpersonal therapy, proposing that CBT without
any form of guidance may be relatively demanding. Richards and
Richardson (2012) found that computer- and Internet-based interven-
tions with 8 sessions or less led to higher effect sizes than interventions
with more than eight sessions. Given that risk of dropout increases sig-
nificantly beyond a certain number of modules (Eysenbach, 2005), a
better understanding of the optimal number and duration of modules
across both guided and unguided interventions for maximizing compli-
ance would be of scientific and clinical importance.

Study Design and Quality

As with trials on face-to-face psychotherapy (Cuijpers, 2016a,
2016b; Cuijpers, Berking, et al., 2013), study quality and design have
also been shown to significantly influence reported outcomes in trials
on digital interventions. A meta-analysis by Andrews et al. (2018)
reported a higher mean effect size for studies with low risk of bias
than studies where the risk of bias was unclear (90 vs. .74). In a
review of study design and quality in computer- and Internet-based
interventions, Arnberg et al. (2014) reported on the lack of proper
quality assessment and objective outcome measures, the relatively
small sample sizes in most trials, a focus on short-term outcomes, the
failure to report on deterioration and adverse events, and the overre-
presentation of trials conducted in a limited number of countries
threatening generalizability. Given that poor quality trials can lead to
a considerable overestimation of effect sizes, a thorough assessment
of study design and related risk of bias is critical if we want to avoid
drawing false conclusions regarding the efficacy of digital interven-
tions and effect moderating factors.

From Efficacy to Effectiveness: Digital Interventions
Beyond the Lab

As the majority of patients with depression are treated in primary
care (Bortolotti et al., 2008; Cuijpers, Quero, Dowrick, et al., 2019),
a critical question for policymakers and service commissioners is
what benefit we can expect to see from digital interventions over
and above usual care (Gilbody et al., 2017)? Whereas efficacy trials
typically focus on internal validity and pay less attention to the gen-
eralizability of the sample population and implementation of the
intervention in the real world (Mohr, Weingardt, et al., 2017),
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effectiveness trials assess whether findings from efficacy trials can
be transferred into routine clinical practice. Here, digital interven-
tions for depression have met with conflicting results.

One of the largest effectiveness studies conducted to-date—
the REACCT (Randomised Evaluation of the Effectiveness and
Acceptability of Computerised Therapy) trial—found no differ-
ence between two well-known Internet-based interventions and
general practitioner care as usual, concluding that the benefits
of Internet-based interventions may not transfer to clinical set-
tings (Gilbody et al., 2015a). However, the study was met with
strong criticism (Gilbody et al., 2015b). In particular, the inter-
ventions used in the trial were critiqued for failing to embrace
core elements of human-computer-interaction design that may
have contributed to the low engagement levels seen in the study
(Gilbody et al., 2015b). Furthermore, the amount of guidance
provided in the study was extremely low (an average of 6
minutes), which may have also accounted for the fact that only
16-18% of patients completed the entire intervention. Indeed, a
follow-up trial, REACCT2 (Gilbody et al., 2017), compared the
original intervention arm with another arm that provided regu-
lar telephone support (six session between 10 and 20 minutes)
and found that the use of the intervention increased by a factor
of 1.5-2 and depression scores were significantly lower at fol-
low-up. A more recent study by Richards et al. (2020) demon-
strated that an eight-week Internet-based CBT intervention
(where those providing guidance were instructed to provide 6
online reviews and spend 15 minutes per participant per
review) was significantly more effective than control conditions
at posttreatment on both self-report and clinician-rated meas-
ures, with statistically significant change also found between
posttreatment and 12-month follow-up. However, as the authors
of the study pointed out, the use of a waitlist control group may
have led to an overestimation of effect sizes compared with
care-as-usual, which would have been more reflective of what
patients typically experience in the absence of a digital
intervention.

These findings raise a number of questions regarding the dis-
semination of digital interventions beyond highly controlled set-
tings. In particular, whether human guidance is a prerequisite for
improved outcomes, what the minimal dose-response relationship
may be to establish compliance, how outcomes compare across
control conditions, and whether there is a difference in outcomes
between different subgroups (e.g., depression severity). To our
knowledge, only two meta-analyses have been conducted to-date
comparing outcomes between efficacy and effectiveness trials in
digital interventions for depression. Andrews et al. (2018) found
no significant difference between efficacy and effectiveness trials,
concluding that results were congruent with those of efficacy tri-
als. However, the review only included three effectiveness studies
targeting depression, several key trials were absent (including the
REACCT trial) and the authors only reported on within-group
effect size. Wright et al. (2019) compared the outcomes of com-
puter-based CBT for depression in primary care settings versus
other settings and found significantly lower effect sizes for the for-
mer (g = .22 vs. g = .57). However, the study did not assess
whether there were differences in outcomes between control con-
ditions, leaving the central question as to whether digital interven-
tions offer advantages over and above usual care unanswered.

Aims of the Current Systematic Review
and Meta-Analysis

The year 2020 marked 30 years since the first article was pub-
lished on a digital intervention for the treatment of depression
(Selmi et al., 1990). It also marked an unparalleled inflection point in
the worldwide conversion of mental health services from face-to-face
delivery to remote, digital solutions in response to the COVID-19
pandemic. Given the accelerated adoption of digital interventions, it is
both timely and important to ask to what extent digital interventions
are effective in the treatment of depression, whether they may provide
viable alternatives to face-to-face psychotherapy beyond the lab and
what are the key factors that moderate outcomes.

The current meta-analysis systematically reviews two decades of
research, providing the largest and most comprehensive meta-analysis
of digital interventions for the treatment of depression conducted to-
date. We aimed to answer the following research questions:

Are Digital Interventions Effective in Reducing Depressive
Symptoms?

a. Is there a difference in outcomes between digital interven-
tions and control conditions?

b. Is there a difference in effect size between digital interven-
tions and face-to-face therapy?

c. Does the type of control condition moderate the compara-
tive effect size of digital interventions versus control
conditions?

d. Do outcomes differ across delivery methods (smartphone
apps versus internet- and computer-based)?

e. Are digital interventions effective in the long-term?

What is the Role of Human Guidance in Influencing
Outcomes?

a. Is there a difference in outcomes between unguided inter-
ventions and interventions with technical guidance and
therapeutic guidance?

b. What is the optimal amount of guidance in improving
outcomes?

c. Does the qualification of the individual providing guid-
ance influence outcomes?

Are Digital Interventions Effective ‘Beyond the Lab’
in Routine Care Settings?

a. Is there a difference in outcomes between efficacy vs
effectiveness trial design and, if so,

b. What factors moderate this?

Additionally, we explored what other factors moderate out-
comes of digital interventions for depression across patient charac-
teristics (age, gender, somatic comorbidity, and baseline severity
levels), intervention components (theoretical orientation, number
of sessions), study design and quality (sample size and ROB), and
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year of publication (to assess for possible changes in effect size
over time).

Method

Search Strategy

We identified studies in a three-step procedure: First, we
searched the Cochrane Central Register of Controlled trials (CEN-
TRAL), PsycINFO, EMBASE and MEDLINE for relevant
articles. The search was originally conducted on September 13,
2019, and then subsequently on October 13, 2020 during the peer-
review process to ensure that the current review included the latest
evidence-base. The search string was validated using a sample set
of articles from previous meta-analyses (see Appendix A in the
online supplemental materials). Second, we checked the reference
lists of relevant existing systematic reviews and meta-analyses
(Andersson & Cuijpers, 2009; Barak et al., 2008; Baumeister et
al., 2014; Carlbring et al., 2018; Cuijpers, Geraedts, et al., 2011;
Cuijpers, van Straten, Warmerdam, et al., 2008; Firth, Torous,
Nicholas, Carney, Pratap, et al., 2017; Karyotaki et al., 2017; Kar-
yotaki, Ebert, et al., 2018; Konigbauer et al., 2017; Linardon et al.,
2019; Spek et al., 2007; Weisel et al., 2019). Third and last, we
conducted backward searches in all included articles. The full texts
of all relevant articles were obtained.

We included studies if (a) they included participants of any age
with depressive symptoms, (b) treatment was provided digital via
a computer in either an offline or online setting, defined as compu-
terized-, online-, Internet-, web-, or smartphone-based, (c) the
study was a randomized controlled trial with an inactive control
condition (i.e., waitlist control or no treatment) or active compari-
son condition (treatment as usual (TAU), attention control, face-
to-face psychotherapy), (d) depressive symptomatology was meas-
ured by validated self- or clinician-rated depression scales, and (e)
elevated depression symptomatology was defined as an inclusion
criteria within the study. Inclusion criteria are summarized in
Appendix B in the online supplemental materials. The whole
selection process was conducted by two independent reviewers
(ILM. and P.P., or M.D. and P.P.). The agreement between the
reviewers was good in both the title and abstract screening
(88.5%, x = .61) and full-text assessment (96.5%, k = .72). Dis-
agreements were resolved by a discussion among the reviewers. If
needed, a third reviewer (L.S.) was consulted.

This systematic review has been registered with the Interna-
tional Prospective Register of Systematic Reviews (PROSPERO
CRD42019136554). Further detailed information on the methodol-
ogy and all procedures for this systematic review and meta-analy-
sis are provided in a study protocol published in advance (Moshe
et al., 2020).

Coding Procedures

The data extraction and coding were performed by two inde-
pendent reviewers (two of LM., P.P., Y.T., M.D.). All studies
were coded for multiple participants, design, intervention, and
method features. Any disagreements were solved in discussion. If
not indicated otherwise, perfect agreement was reached between
the reviewers.

Depression Qutcome Measures

In each study all depression outcomes were extracted. This
included different outcome measurements (e.g., self-report and cli-
nician ratings) as well as outcomes at different assessment times.
The mean and standard deviation for all intervention and control
conditions within a study were coded for the calculation of the
effect size. For the calculation process see the data analysis section
below. Furthermore, the assessment time and instrument were also
coded.

Compliance Qutcome Measures

In addition to the depression outcomes, compliance was
extracted as an outcome. Compliance was extracted for interven-
tion compliance and assessment compliance. The extracted fea-
tures were the proportion of participants completing assessments,
the proportion of participants completing the first intervention
module, the average number of intervention modules completed
and the proportion of participants completing all modules.

Design and Study Features

We coded the following design and study features: (a) year of
publication, (b) type of control group, (c) sample size, (d) region
(Asia, Europe, North America, Oceania, multiple, other), and (e)
efficacy or effectiveness trial.

Intervention Components

The structure and type of the digital intervention varied across
studies. To further describe the interventions used in the study we
extracted the (a) type of guidance (unguided, therapeutic guidance
[involving therapeutic human support] and technical guidance
[which included compliance-focused guidance from a human]),
(b) qualification of the guiding personnel (“high,” i.e., M.Sc. or
Diploma degree in psychology, or professions status as psycho-
therapist in training, psychotherapist or psychiatrist; “low,” i.e.,
B.Sc., other qualifications or mixed codings), (¢) communication
mode (synchronous or asynchronous), (d) average guidance time
for each participant in minutes, (e¢) number of intervention mod-
ules, and (f) theoretical orientation of the intervention (third-wave,
cognitive behavioral therapy, psychodynamic therapy, problem-
solving therapy, life-review therapy, other).

Participant Characteristics

We coded (a) age of participants, (b) gender (percentage of
females), (c) target population, (d) somatic comorbidities, and (e)
baseline severity. Baseline severity was analyzed as a continuous
variable to avoid bias resulting from for example, categorization
(healthy, mild, severe depression). Of the 17 unique depression
scales found in the included studies, the PHQ-9 was the most fre-
quently used scale (k = 29, 35%). For all studies reporting baseline
severity using PHQ-9, the PHQ-9 was used. One study applied the
PHQ-8 and, because of the similarity of both instruments (e.g., r =
.98 or equivalent clinical cut-offs; Kroenke et al., 2009; Shin
et al., 2019), the PHQ-8 score was used for baseline severity in
this study. For all other studies, the provided information was
recoded to PHQ-9 using two different procedures, depending on
the instrument in question. For the Montgomery-z&sberg Depres-
sion Rating Scale (MADRS) and Beck Depression Inventory II
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(BDI-II) instruments, we used the conversion equations' provided
by Hawley and colleagues (2013). The applied equations have
been shown to have good statistical validity (e.g., Hawley et al.,
2013). A total of k =21 (25%) studies were recoded using this pro-
cedure. For the ICD-10 Symptom Rating (ISR), Beck Depression
Inventory II (BDI-I), Hospital Anxiety and Depression Scale
(HADS), Center for Epidemiologic Studies Depression Scale
(CES-D), Patient Reported Outcomes Measurement Information
System (PROMIS) Depression, Inventory of Depressive Symp-
tomatology (IDS), Quick Inventory of Depressive Symptomatol-
ogy (QIDS), and Hamilton Depression Rating Scale (HDRS),
cross-walk tables were used matching the sum scores of the re-
spective depression instruments to each other based on their under-
lying latent depression score (theta value based on Item-response
theory analysis; Choi et al., 2014; IDS/QIDS, 2021; Wahl et al.,
2014). The applied tables have previously been validated and
showed strong validity (Choi et al., 2014; Wahl et al., 2014).
Recoding using the cross-walk tables was conducted separately by
two independent reviewers (YT and PP). For the recoded baseline
severity, the agreement between the coders was excellent ICC =
.999, 95% CI [.998, 1.000]). The recoded baseline severity ratings
of both reviewers were averaged before the analysis to increase
objectivity. A total of £ = 30 (36%) studies were recoded accord-
ing to this. For two studies using the Edinburgh Postnatal Depres-
sion Scale and Mood and Feelings Questionnaire, the above
outline procedures were not applicable and the two respective
studies were coded as NA. For the extracted data for each study
see Appendix C in the online supplemental materials.

Study Quality (Risk of Bias Assessment)

Study quality was assessed by two independent reviewers (two
of LM., P.P., Y.T., M.D.) using the risk of bias tool for random-
ized trials (RoB; Higgins et al., 2003, 2011). The overall agree-
ment in the RoB between the reviewers was excellent with 85.5%
(x = .73). Disagreements were resolved by discussion among the
reviewers. If needed, a third researcher (L.S.) was consulted to
reach consensus. We assessed Risk of Bias for the following
domains: (a) “selection bias”; (b) “performance bias”; (c) “detec-
tion bias”; (d) “attrition bias”; (e) “reporting bias”; and (f) “other
bias.” Risk of bias in each domain was judged as “low,” “unclear,”
or “high.”

Data Synthesis and Meta-Analysis
Overview of Meta-Analytic Procedures

The present analysis focused on group differences at post between
digital interventions and control conditions on symptoms of depression
in RCTs. Hedges” g was used as the effect size (ES) to quantify the
between-group differences (Hedges, 1981): difference in groups’
means were divided by their pooled sample size adjusted standard
deviation. Therefore, the means, standard deviations and group sizes
were extracted at post for each group. This was also done for baseline
to be able to adjust for potential baseline differences. Standard formula
for bias correction in small samples (n < 50) was applied, if needed
(Ellis, 2010; Hedges, 1981). Intention to treat (ITT) data was used in
the analysis. As outlined above, studies contained multiple outcomes
for depression at multiple assessment time points and partly provided

multiple comparators (e.g., different interventions or control types)
within the same study. For each of these data points the ES was calcu-
lated resulting in dependencies within a study. Hence, we used a three-
level metaregression model with random effects to account for the
introduced dependencies (Assink & Wibbelink, 2016; Cooper &
Hedges, 2009; Pastor & Lazowski, 2018). By assuming a three-level
structure we accounted for three different variance components distrib-
uted over the three levels in the model. This included sampling var-
iance of the extracted effect sizes at level one; variance between the
extracted effect sizes from the same study at level two; and variance
between studies at level three (Assink & Wibbelink, 2016). Hence,
multiple effect sizes resulting from multiple outcomes, multiple com-
parison groups or multiple assessments could be included while their
dependencies could be accounted for using the three-level structure.
This procedure avoids biases caused by the pooling of different effect
sizes within a study, where the correlations between outcomes are not
reported. For an in-depth overview see Assink and Wibbelink (2016);
Cooper and Hedges (2009) and Pastor and Lazowski (2018). In addi-
tion, we used cluster-robust standard errors to adjust for potential cor-
relations between effect size estimates (i.e., correlations of level-1
sampling errors; Ferndndez-Castilla et al., 2021; Pustejovsky, 2021;
Pustejovsky & Tipton, 2020).

According to the three-level metaregression model procedure,
the average ES of digital interventions was calculated using an
intercept-only model. However, to adjust for potential baseline dif-
ferences (e.g., introduced by postrandomization attrition) we
included baseline differences as a covariate throughout the analy-
ses. Afterward, different subsets and metaregression was used to
quantity the influence predictors, controlled for baseline differen-
ces, if not otherwise indicated. Profile likelihood plots were used
to check for overparameterization and identifiability. A subset was
defined to investigate the average ES in each control type. In addi-
tion, we used metaregression to assess the ES of digital interven-
tions in active and inactive control conditions. Similarly, we
estimated the ES for each delivery modality and tested for signifi-
cant differences. In addition, the three-level structure allows for
the inclusion of multiple assessment points (e.g., post, six months,
and 12 months follow-up assessment) from the same study. To an-
swer the question of long-term efficacy and effectiveness of digital
interventions, metaregression with assessment time as predictor
was conducted. We tested for a linear, quadratic, and cubic change
in ES over assessment time.

A second major focus of the present study was to investigate the
role of guidance on the ES of digital interventions. We used the
following operational definitions of guided and unguided interven-
tions: In unguided interventions no human support was involved
and thus interventions can be considered as fully self-guided inter-
ventions. In guided interventions with technical and compliance-
facilitating support, the main goal of support was to solve techni-
cal problems and facilitate the motivation and compliance of
patients to the intervention; essentially, the technologically deliv-
ered human support offered was not intended to be therapeutic
itself and did not deal with therapeutic process-related aspects. In
contrast, in interventions with therapeutic guidance, the main
focus of technology-mediated human support was dedicated to

! PHQ =3.126 + .523 X MADRS; PHQ = —12.07 + .489 X SRS; PHQ =
2.308 + .422 X BDI (Hawley et al., 2013).
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content and processes related to the treatment and was of a genu-
ine therapeutic nature. To distinguish between the different types
of guidance provided, we also extracted the professions and quali-
fication of the persons implementing the guidance—as well as in-
formation on supervision, the amount of guidance and
communication mode—to reflect the plethora of approaches used
to deliver guidance in digital interventions for depression globally
and to enable more fine-grained analyses related to the role of
guidance. Importantly, to categorize the type of guidance, we
focused exclusively on the a priori operationalizations of guidance
as stated in the publications of primary studies rather than the
actual uptake and usage of guidance by patients. The average ES
for each type of guidance was explored. Moreover, we tested for
significant differences in outcomes between interventions with
technical guidance compared with unguided interventions and
interventions with therapeutic guidance compared with unguided
interventions using metaregression. In the latter subset of unguided
and therapeutic guided digital interventions, we tested also for an
interaction of the guidance effect with (a) qualification of guiding
personnel and (b) guidance time. The third research question
within this study was whether digital interventions are effective in
routine care (i.e., effectiveness) settings. To answer this question
and provide a comparison of ES between efficacy and effective-
ness settings, we separately calculated the average ES in efficacy
and effectiveness studies and tested for differences using the meta-
regression approach.

Additionally, we used metaregression to assess the following
moderators:(a) pretreatment depression severity,(b) somatic
comorbidities, (c) gender, (d) age, (e) therapeutic approach, (f)
number of modules, (g) study quality (item-wise RoB), and (h)
year of publication.

Last, we explored intervention compliance using a three-level
random effects metaregression model. Intervention compliance
was defined in two ways: (a) as the percentage of participants that
completed all modules (= completer rate) and (b) the average per-
centage of modules completed by a participant (= module comple-
tion rate). A subset for each of these definitions was used. Only
studies reporting information on intervention compliance were
included, respectively. As in the models for effect size, the influ-
ence of moderators was explored with metaregression. We also
explored the influence of compliance on ES in the two subsets.

All analyses were conducted using R (R Development Core
Team, 2016). The metafor package was the primary analysis pack-
age (Pastor & Lazowski, 2018; Viechtbauer, 2010).

Study Heterogeneity and Variance Components

Heterogeneity was calculated using the I statistic (Borenstein
et al., 2017). Profile likelihood confidence intervals were also cal-
culated (Borenstein et al., 2017; Jackson et al., 2014). A value of
0% indicates no heterogeneity and higher values indicate higher
heterogeneity. A heterogeneity of 25% is defined as the threshold
for low, 50% for moderate and 75% for high heterogeneity (Iloan-
nidis et al., 2007). We expected high heterogeneity based on the
findings of previous meta-analyses and the extended time frame in
the present study. In addition, we reported the variance compo-
nents for level 2 (c2,,,) and level 3 (o2, .,,) to quantify the
between- and within-study heterogeneity (Borenstein et al., 2017;
Konstantopoulos, 2011).

Small Study Effects and Publication Bias

To detect small study effects or potential publication bias we
used the following methods: First, we used a funnel plot visualizing
the ES against the precision (standard error [SE]). Asymmetry
would indicate an influence of precision on the ES and potential
bias. Second, the potential influence of precision was tested using
the Egger’s test adapted to the three level structure of the present
meta-analysis (Egger et al., 1997; Fernandez-Castilla et al., 2021).
However, instead of the standard error, we used the weight as a pre-
dictor in the metaregression model, because using SE tends to over-
reject due to artifactual correlations with ES (Pustejovsky &
Rodgers, 2019). Third, we used significance funnel plot visualizing
the extent to which ES in nonaffirmative studies’ (nonsignificant
ES or ES favoring control) are systematically smaller than the entire
set of ES estimates (Mathur & VanderWeele, 2020). The ES based
on nonaffirmative studies provided an approximation for the ES in
case of maximal publication bias. In addition, we calculated publi-
cation bias-corrected ES under robust random-effects specifications
according to procedures outlined in Mathur and VanderWeele
(2020) for varying degrees of publication bias (n = 1 to 50, where
M indicates the increased likelihood for affirmative findings to be
published).

Results

Study Characteristics

Our search yielded 14,513 articles (CENTRAL = 3,711;
Embase = 4,333; Medline = 3,764; PsycINFO = 2,705). After the
removal of duplicates, we assessed a total of 7,651 studies by title
and abstract, of which 351 were considered potentially relevant.
After full-text assessment, 88 published article covering 83 unique
studies met the inclusion criteria and were included (see Figure 1).
The first study in the field of digital interventions was published
in 1990 (Selmi et al., 1990). Interestingly, we found no other
study published in the first decade. However, the field has
grown rapidly since 2000: Ten studies were published during
the second decade (2000-2009) and in the last decade, 72 stud-
ies were published (2010-2020). See Table 2 for selected char-
acteristics of the included studies.

Overall N = 15,530 individuals participated in the included studies.
Most of the studies focused on adult populations (k = 79, 95%). The
mean age across all studies was M = 41.33 (SD = 9.68). Women were
represented more frequently in the included RCTs (M = 69.5%, SD =
15.3%). Moreover, the included studies mainly focused on individuals
with mild to moderate depression symptom severity (recoded PHQ-9:
M = 1291, SD = 2.95). Studies were predominantly conducted in
western cultures: Europe (k = 51, 61%), North America (k = 15,
18%). and Australia and New Zealand (k = 13, 16%). Only three of
the included studies were conducted in Asia (4%) and one study in
South America (1%). We found no studies conducted in Africa.

Cognitive behavioral therapy served most often as the theoreti-
cal orientation in digital interventions (k = 67, 74.4%), followed
by third-wave (k = 9, 10.0%), problem-solving therapy (k = 7,
7.8%), psychodynamic therapy (k = 1, 1.1%), life review therapy
(k=1, 1.1%), and other (k = 5, 5.6%; e.g., combined approaches).
Most digital interventions were accompanied by some form of
guidance (k = 72, 80.0%; therapeutic guidance: k = 47, 52.2;
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technical guidance: k = 25, 27.8%), whereas k = 18 interventions
were unguided (20.0%). The average number of modules was M =
7.4 (SD = 2.1). For a summary of the study characteristics see Ta-
ble 3.

Study Quality (Risk of Bias Assessment)

The risk of bias assessment identified “sequence generation”
(low: k=75, 90.4%; unclear: k = 5, 6.0%; high: k = 3, 3.6%) and
“other biases” (low: k = 78, 94.0%; unclear: k = 2, 2.4%; high: k =
3, 3.6%) as the least sources of risk of bias. “Allocation conceal-
ment” was also low in the majority of studies (k = 61, 73.5%;
unclear: k = 19, 22.9%; high: k = 3, 3.6%). Risk of bias due to
“selective outcome reporting” was rated low in 59 studies (71.1%)
and unclear in 24 (28.9%). Regarding “incomplete data handling,”
55 studies (66.2%) were rated as low, 3 (3.6%) as unclear, and 25
(30.1%) as high. Risk of bias from “blinding of participants” was
rated high for most studies (low: k& = 0, 0%; unclear: k = 16,
19.27%; high: k = 67, 80.72%) as was the risk of bias for “blinding
of outcome assessors” (low: k = 7, 7.23%, unclear: k = 17,
20.48%; high: k = 60, 72.3%). In psychotherapy research the com-
plete masking of participants (and personnel providing therapeutic sup-
port) is generally not feasible (Munder & Barth, 2018) and self-report
ratings might therefore be prone to bias; thus, we rated self-reports

with a high risk of bias on the “blinding of outcome assessors” domain
in most instances. However, it may be conceivable that in pure self-
help interventions (without any guidance) participants might be
unaware of the intervention condition they receive, especially when
there are two active comparison conditions. Finally, RoB item-wise
comparison between low-risk studies against high-risk studies showed
no differences in the ES (all p > .05). A summary of the risk of bias
across all studies appears in Figure 2.

Are Digital Interventions Effective in Reducing
Depressive Symptoms?

The k = 83 included studies provided a total of 121 comparisons
between digital interventions and any control group at posttreatment.
The average effect size of digital interventions compared with any con-
trol group adjusted for baseline differences was g = .52,95% CI [.43,
.60], p < .001; forest plot presented in Appendix D in the online sup-
plemental materials). Heterogeneity was high: 7 = 84, 95% CI [57,
100]; 62, = 001, 95% CI [.00, .006], GZ,,00n = -126, 95% CI
[.086, .189]. See Table 4 for details on effect sizes of interventions
when compared with different control conditions.

The majority of included studies used cut-off-based inclusion crite-
ria (k = 51, 61.4%). Only k = 32 (38.55%) studies required a clinical
diagnosis of any depressive disorder and, of these, k = 22 (26.5%)
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Table 2
Selected Characteristics of Studies of Digital Interventions for Depression
Intervention
Outcome Delivery Guidance  Hedge’s completion %
Study N M Age(SD) Control measure method type g rate (%) Completors  Country
Andersson et al.

(2005) 117 36.35(10.71) WLC BDI Internet GS 0.97 74.0 65.0 SE
Andersson et al.

(2013) 69 423 (13.5) gF2F MADRS-S Internet GS 0.39 96.9 87.9 SE
Baumeister et al.

(2021) 209 499 (9.36) TAU HRSD-17 Internet GS 0.25 — 55.0 DE
Beevers et al.

(2017) 376 3191 (11.2) WLC QIDS-SR Internet TG 0.82 — — usS
Beiwinkel et al.

(2017) 180 47.74 (10.92) ATT PHQ-9 Internet GS 0.39 — — DE
Berger et al.

(2011) 51 38091 (14.16) WLC BDI-II Internet GS 1.14 85.2 56.0 Multiple
Berger et al.

(2011) 51 39.11(13.71) WLC BDI-II Internet UG 0.66 68.0 36.0 Multiple
Birney et al.

(2016) 300 — ATT PHQ-9 Smartphone TG 0.14 — — usS
Boele et al. (2018) 89 44.99 (11.99) WLC CES-D Internet GS 0.63 — — NL
Boeschoten et al.

(2017) 171  48.9(10.5) WLC BDI-II Internet GS 0.08 — 50.6 NL
Buntrock et al.

(2015) 406 45.04 (11.89) ATT CES-D Internet GS 0.66 82.2 68.3 DE
Carlbring et al.

(2013) 80 444 (13.5) WLC MADRS-S Internet GS 0.64 72.9 27.5 SE
Choi et al. (2012) 55 39(11.7)  WLC CBDI Internet GS 0.91 69.5 68.0 ANZ
Christensen et al.

(2004) 360 36.07 (9.4) ATT CES-D Internet TG 0.33 51.0 — ANZ
Clarke et al.

(2002) 299 44.35(12.2) TAU CES-D Internet UG 0.25 37.1 — usS
Clarke et al.

(2005) 175 47.27 (10.8) TAU CES-D Internet TG 0.06 84.3 — usS
Clarke et al.

(2005) 180 44.73 (10.5) TAU CES-D Internet TG —0.20 84.3 — usS
Clarke et al.

(2009) 160 22.65 (2.3) TAU PHQ-8 Internet UG 0.16 — — usS
De Graaf et al

(2009, 2011) 203 4471 (12) TAU BDI-II Internet UG 0.15 42.5 14.0 NL
Deady et al.

(2016) 104 21.74 (2.22) ATT PHQ-9 Internet UG 0.46 37.5 — ANZ
Ebert et al.

(2014) 150  47.1 (8.2) WLC CES-D Internet GS 0.69 — 60.0 DE
Ebert et al.

(2017) 256  50.8(11.8) ATT CES-D Internet GS 0.89 — 61.5 DE
Ebert et al.

(2018) 204 442 (11.73) WLC QIDS-C Internet GS 0.40 83.3 61.8 DE
Farrer et al.

(2011) 73 40.47(12.13) TAU CES-D Internet UG 0.78 30.0 15.8 ANZ
Farrer et al.

(2011) 80 42.58(12.2) TAU CES-D Internet TG 1.08 40.0 17.8 ANZ
Fischer et al.

(2015) 90 45.28(11.99) WLC BDI Internet UG 0.33 — — DE
Flygare et al.

(2020) 95 453(12.2) ATT MADRS-S Internet GS 0.23 73.8 — SE
Forand et al.

(2018) 89 — WLC PHQ-9 Internet GS 1.61 77.8 55.9 usS
Forsell et al.

(2017) 42 31.01 (4.57) TAU MADRS-S Internet GS 1.18 53.0 — SE
Geraedts,

Kleiboer,

Twisk, et al.

(2014),

Geraedts,

Kleiboer,

Wiezer, et al.

(2014) 231  43.4(9.2) TAU CES-D Internet GS 0.25 — 27.6

.(table continues)
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Table 2 (continued)
Intervention
Outcome Delivery Guidance  Hedge’s completion %
Study N M Age(SD) Control measure method type g rate (%) Completors  Country
Gilbody et al.

(2015a) 481 39.97(12.81) TAU PHQ-9 Internet TG —0.01 — 12.0 UK
Gilbody et al.

(2015a) 449 — TAU PHQ-9 Internet TG —0.05 — 14.8 UK
Gladstone et al.

(2018) 369 15.4(1.5) ATT CES-D Internet TG —0.28 22.7 — us
Gladstone et al.

(2018) 369 154 (1.5) ATT CES-D Internet TG —0.06 22.7 — us
Glozier et al.

(2013) 562 57.95 (6.6) ATT PHQ-9 Internet TG 0.16 — — ANZ
Guo et al. (2020) 300  28.3(5.8) WLC CES-D Smartphone TG 0.63 55.0 — CN
Hallgren et al.

(2015) 629 43 (12) TAU MADRS-S Internet GS 0.33 60.0 — SE
Ip et al. (2016) 257 14.63 (0.81) ATT CES-D-R Internet TG —0.01 30.0 10.1 CN
Johansson,

Ekbladh, et al.

(2012) 92 45.6(14) other BDI-II Internet GS 1.12 — 78.3 SE
Johansson,

Sjoberg, et al.

(2012) 79 4428 (12.72) ATT BDI-II Internet GS 0.56 80.7 — SE
Johansson,

Sjoberg, et al.

(2012) 78 45.22(11.39) ATT BDI-II Internet GS 0.83 77.2 — SE
Johansson,

Bjérehed, et al.

(2019) 54 — WLC MADRS-S Internet GS 1.27 78.8 54.0 SE
Johansson,

Westas, et al.

(2019) 144 63 (12) ATT PHQ-9 Internet TG 0.44 — 59.7 SE
Kenter et al.

(2016) 269 38(11.4) ATT CES-D Internet GS —0.07 — 12.5 NL
Kivi et al. (2014) 79  36.6(11.3) TAU BDI-II Internet GS 0.12 72.9 55.6 SE
Lamers et al.

(2015) 116 57.09 (9.16) WLC CES-D Internet GS 0.35 — — NL
Lappalainen et al.

(2014) 38 44.61 (14.28) F2F BDI-II Internet GS —0.15 — — FI
Lappalainen et al.

(2015) 39 51.9(12.88) WLC BDI-II Internet GS 0.61 97.4 94.7 FI
Levinetal. (2011) 191 43.52(12.93) TAU CES-D Computer TG 0.44 — — UsS
Lobner et al.

(2018) 647 43.89(13.29) TAU PHQ-9 Internet uG 0.00 — 9.1 DE
Lokman et al.

(2017) 329 43.25(12.94) WLC IDS-SR Internet uG 0.42 — — NL
Meyer et al.

(2015) 163 42 (11.39) TAU PHQ-9 Internet uG 0.57 — — DE
Meyer et al.

(2019) 200  40.3 (13.12) WLC PHQ-9 Internet UG 0.54 — — DE
Milgrom et al.

(2016) 43 31.6(4.44) TAU BDI-II Internet GS 0.81 — 85.7 ANZ
Mira et al.

(2017) 80 3591(9.94) WLC BDI-II Internet UG 0.50 73.0 77.8 ES
Mira et al.

(2017) 88 35.77(9.78) WLC BDI-II Internet TG 0.35 73.0 77.8 ES
Montero-Marin et

al. (2016) 198 43.11 (9.49) TAU BDI-II Internet GS 0.08 — — ES
Montero-Marin et

al. (2016) 200 42.81(10.84) TAU BDI-II Internet uG 0.12 — — ES
Moritz et al.

(2012) 210 38.57 (13.75) WLC BDI Internet UG 0.43 63.2 — DE
Newby et al.

(2017) 90  46.7(12.6) WLC PHQ-9 Internet GS 0.79 — 65.9 ANZ
Nobis et al.

(2015) 256 51(12) ATT CES-D Internet GS 0.89 — 62.0 DE
Noguchi et al.

(2017) 651 43.85(11.3) WLC CES-D Internet UG —0.02 —

— JP
(table continues)
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Intervention
Outcome Delivery Guidance  Hedge’s completion %
Study N M Age(SD) Control measure method type g rate (%) Completors  Country
Nygren et al.

(2019) 50 33.86(8.12) WLC BDI-II Internet GS 1.23 62.9 36.0 SE
Oehler et al.

(2020) 347 — ATT IDS-SR Internet TG 0.23 91.7 — DE
O’moore et al.

(2018) 69 61.9(6.92) TAU PHQ-9 Internet TG 1.02 — 84.1 ANZ
Perini et al.

(2009) 45 49.29 (12.06) WLC PHQ-9 Internet GS 0.83 — 74.1 ANZ
Pfeiffer et al.

(2020) 330  51.6(149) TAU QIDS-SR Internet GS 0.14 47.5 — us
Pots et al. (2016) 169 469 (11.77) WLC CES-D Internet GS 0.56 — 73.0 NL
Pugh et al. (2016) 50 — WLC EPDS Internet GS 1.04 84.6 60.0 CA
Reins et al. (2019) 131  41.6(10.8) ATT HRSD-24 Internet GS 0.32 — 75.4 DE
Richards et al.

(2015) 188 39.86(10.92) WLC BDI-II Internet GS 0.65 — 36.0 UK
Roepke et al. Smartphone

(2015) 186 — WLC CES-D + Internet uG 0.31 — — us
Rosso et al.

(2017) 77 2899 (7.21) ATT HRSD-17 Internet TG 0.79 — 91.9 UsS
Ruwaard et al.

(2009) 54 42(9.51)  WLC BDI-IA Internet GS 0.84 — — NL
Salamanca-

Sanabria et al.

(2020) 214 22,15 (4.7) WLC PHQ-9 Internet TG 0.88 — 9.3 CcO
Sander et al.

(2020) 295 52.8(7.7) TAU PHQ-9 Internet GS 0.42 67.5 0.5 DE
Schure et al. Smartphone

(2019) 343 429(133) WLC PHQ-9 + Internet TG 0.50 28.1 — us
Segal et al.

(2020) 460 483 (149) TAU PHQ-9 Internet TG 0.55 60.0 274 CA
Selmi et al.

(1990) 24 299 (441) WLC BDI Computer TG 1.00 100.0 100.0 us
Selmi et al.

(1990) 24 — F2F BDI Computer TG 0.18 100.0 100.0 us
Selmi et al.

(1990) 24 29944 WLC BDI Computer TG 1.67 100.0 100.0 us
Smith et al.

(2015) 112 — WLC MFQ-C Computer UG 0.82 — 85.5 UK
Smith et al.

(2017) 113 39.94 (12.96) WLC PHQ-9 Internet TG 0.87 — 59.3 ANZ
Spek et al.

(2007) 202 55495 WLC BDI-II Internet UG 0.27 78.1 48.3 NL
Spek et al.

(2007) 201 55(4.95) gF2F BDI-1I Internet UG —0.06 78.1 483 NL
Titov et al.

(2010) 86 42.79 (1291) WLC PHQ-9 Internet GS 1.27 — 69.6 ANZ
Titov et al. (2010) 81 44.99 (12.92) WLC PHQ-9 Internet TG 1.27 — 80.5 ANZ
Titov et al. (2015) 52 — WLC PHQ-9 Internet GS 2.29 — 70.0 ANZ
Unlii Ince et al.

(2013) 96  352(9.3) WLC CES-D Internet GS 1.51 — 20.4 NL
van Luenen et al.

(2018) 188  46.3(10.63) ATT PHQ-9 Internet TG 0.61 — — NL
Vernmark et al.

(2010) 58 34.95(11.86) WLC BDI Internet GS 0.57 85.7 58.6 SE
Wagner et al.

(2014) 62 — F2F BDI-1I Internet GS —0.01 — 78.1 CH
Warmerdam et al.

(2008) 175 — WLC CES-D Internet GS 0.47 — 37.5 NL
Warmerdam et al.

(2008) 175 — WLC CES-D Internet GS 0.26 — 38.6 NL
Williams et al.

(2013) 63 4476 (12.05) WLC BDI-1I Internet GS 0.97 — 54.3 ANZ
Wright et al.

(2017) 91 15.35(1.3) ATT BDI Computer TG 0.00 — 62.2 UK
Note. WLC = Waiting list control; gF2F = group Face-to-Face; TAU = Treatment as usual; ATT = attention; GS = guided service; TG = technical guid-

ance; UG = unguided.
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Table 3
Descriptive Summary of the Characteristics of the Studies
Included in the Meta-Analysis (k = 83)

Name Total
Number of studies 83
Participant characteristics
Age M (SD) 41.3 (9.7)
Females 69.5%
Target populations
Children and adolescents 5 (6%)
Adults 76 (91.6%)
Older adults (>50 years) 2 (2.4%)
Baseline severity (PHQ-9) 12.9 (2.9)
Comorbid diseases 15 (18.1%)
Intervention characteristics
Guidance
Therapeutic 47 (52.2%)
Technical 25 (27.8%)
Unguided 18 (20.0%)
Number of modules 73 2.2)
Theoretical orientation
Third-wave 9 (10.0%)
CBT 67 (74.4%)
LRT 1(1.1%)
DYN 1(1.1%)
PST 7 (7.8%)
Other 5(5.6%)
Study design
Passive control
Wait-list control 43 (46.7%)
Active control conditions
Treatment as usual 24 (26.1%)
Attention control 19 (20.7%)
Face-to-face 3 (3.2%)
Group face-to-face 2 (2.2%)
Other* 1(1.1%)
Setting
Efficacy 62 (74.7%)
Effectiveness 21 (25.3%)
Sample size
Total N 15,530
M (SD) 173.4 (148.0)
Location
Europe 51 (61%)
Australia & New Zealand 13 (16%)
North America 15 (18%)
Asia 3 (4%)
Africa 0 (0%)
South America 1 (1%)

Note. CBT = cognitive behavioral therapy; LRT = life review therapy;
DYN = psychodynamic therapy; PST = problem solving therapy.

* Psychoeducation with weekly guidance (Johansson, Ekbladh, et al.,
2012).

included only patients with Major Depressive Disorder. In the
subset of any depressive disorder the ES was g = .52, 95% CI
[.37,.66], p < .001; I’ =79, 95% CI [44, 100]; 62, = .001,
95% CI [.00, .012], O7,,10en = -130, 95% CI [.072, .245],
whereas in the subset of MDD patients the ES was g = .59,
95% CI [.40, .78], p < .001; I* = 79, 95% CI [40, 100]; &2,
= .001, 95% CI [.00, .022], 67, een = -155, 95% CI [.078,
.331]. Hence, digital interventions were shown to be effective
both in for participants with elevated depressive symptoms

and in participants with a formal diagnosis of depression.

Is There a Difference in Effect Size Between Digital
Interventions and Face-to-Face Therapy?

Only three comparisons from three studies were available compar-
ing digital interventions and individual face-to-face therapy, all of
which involved interventions with human guidance. The comparison
adjusted for baseline differences indicated there was a nonsignificant
difference to face-to-face therapy of g = —.01, 95% CI [-2.73,
2721, p = 982; P < .001, 95% CI [00, 100]; o2, =
fixed, Gi oween < 001, 95% CI [.000, 9.195]. For group face-to-face
therapy we identified only two studies, which provided a total of
three data points at post. Again, based on this limited evidence,
there was no significant difference (unadjusted for baseline dif-
ference, owing to convergence; g = .17, 95% CI [-2.91, 3.26],
p =.609); I’ = 69, 95% CI [.00, 100]; c2,,., = .001, 95% CI

000, .976], 62, y0en = -093, 95% CI[.000, > 10.000].

Does the Type of Control Condition Moderate the
Comparative Effect Size of Digital Interventions Versus
Control Condition?

The type of control condition varied across the included studies
and included passive (= WLC) and active (e.g., attention) control
conditions. Overall, the number of between-group comparisons
between the intervention group and passive control conditions
(WLC: n =57, 47.1%) and active control conditions (total: n = 64,
52.9%; TAU: n = 26; attention control: n = 29; individual F2F: n =
3; group F2F: n = 3; other: n = 3) were almost equal. Using meta-
regression to assess whether the type of control condition moder-
ated reported outcomes, we identified that the control type (active
vs. passive) significantly influenced ES, explaining 22.4% of the
variance between studies. Studies with passive control conditions
showed a significant higher between-group ES than studies with
active control conditions (f = .35, 95% CI [.21, .49], p < .001).
For the subset of WLC comparisons, the between-group ES was
medium-to-large with a pooled ES of g = .70. 95% CI [.58, .83],
p <.001; =179, 95% CI [43, 100]; 2. < .001, 95% CI [.000,
0141, 62, 0on = -118, 95% CI [.065, .219]. Digital interventions
also outperformed active control conditions, g = .35, 95% CI [.26,
45], p < .001; PP = 80, 95% CI [54, 100]; ©2,,,,,< 001, 95% CI
[.000, .005], Glzmwm = .098, 95% CI [.066, .149]. However, the
effect was small-to-medium. Further sensitivity analyses were con-
ducted to provide an average ES for each active control type. When
compared with attention control conditions, the average ES for digi-
tal interventions was g = .36, 95% CI [.19, .54], p < .001; P =84,
95% CI [41, 100]; 62,,,,,< -001, 95% CI [.000, .023], 62, .en =
.104,95% CI[.051, .236] and in treatment as usual control conditions
the average effect was g = .31, 95% CI [ .21, 41], p < .001; P =60,
95% CI [0, 100]; 62,4, < -001, 95% CI [.000, .027], 67, cen = -026,
95% CI [.000, .098]. The forest plots for the ES of digital interven-
tions compared with all control types are presented in Appendices
E—H in the online supplemental materials.

Do Outcomes Differ Across Delivery Methods?

Most included studies used the Internet for the delivery of the
intervention (k = 75, 90.36%). Only four studies (4.82%) reported
on the ES of computer-based interventions, two on smartphone-
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Figure 2
Summary of Risk of Bias
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Note.

based apps and Internet combined interventions (2.41%), and two
on interventions using smartphone-based apps exclusively
(2.41%). When comparing to all control conditions, the average
ES in Internet-based intervention was g = .53, 95% CI [.43, .62],
p < .001; PP =85, 95% CI [57, 100]; o2 ,,,,,< .001, 95% CI [.000,
0001, 62,00n = -138, 95% CI [.092, .210], computer-based ES

was g = .45, 95% CI [—.42, 1.31], p = .151; F = 62, 95% CI [0,

See the online article for the color version of this figure.

100]; 62,5, = -108, 95% CI [.000, 1.548], 67,,,00n< -000, 95% CI
[.000, 1.95], and smartphone-based interventions (combining
smartphone exclusive and enhanced interventions) showed a supe-
riority of g = .39, 95% CI [—.27, 1.06], p = .122; I = 80, 95% CI
[2, 100]; 62, fixed to zero, G2,.en = 054, 95% CI [.002,
1.181]. Although the point estimates indicated that computer-

based and smartphone-based interventions may be inferior to

Table 4
Effects of Psychotherapies Across Different Types of Control Conditions: Hedges’ g
Control type g 95% CI p value P Gfmhm Giemen
All control conditions 0.52 [0.43, 0.60] <.001 84 (57 to 100) <0.001 (0.000 to 0.006) 0.126 (0.086 to 0.189)
Passive control conditions
WLC 0.70 [0.58, 0.83] <.001 79 (43 to 100) <0.001 (0.000 to 0.014) 0.118 (0.065 to 0.219)
Active control conditions
TAU 0.31 [0.21, 0.41] <.001 60 (0 to 100) <0.001 (0.000 to 0.037) 0.026 (0.000 to 0.098)
Attention 0.36 [0.19, 0.54] <.001 84 (41 to 100) <0.001 (0.000 to 0.023) 0.104 (0.051 to 0.236)
Face-to-face —0.01 [—2.73,2.72] 982 <.001 (0.00 to 100) 0 (fixed)* <0.001 (0.000 to 9.195

Note.

Hedges g according to the random-effects model. WLC = waitlist control; TAU = treatment-as-usual.
* Only one effect size per study, hence within-study variance was fixed to zero.
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Internet-based interventions, metaregression did not show any signifi-
cant differences (p > .05). However, only one trial (Guo et al., 2020)
indicated the efficacy of a stand-alone smartphone app intervention on
the reduction of depressive symptoms. Notably, none of the computer-
based or smartphone-based interventions involved therapeutic guidance.

Are Digital Interventions Effective in the Long Term?

The three-level metaregression enables the estimation of con-
tinuous predictors. Since the included studies provided a broad
range of assessment times, we evaluated whether the assessment
time influenced the effect size of digital interventions compared
with control conditions. However, 95% of all comparisons did
not extend further than a one-year follow-up. Hence, we included
only data points up to one-year. We did not identify a significant
decrease in ES within a one-year period (linear, quadratic, and
cubic effects: p > .05).

What Is the Role of Human Guidance on Influencing
Outcomes?

We calculated the average ES separately for the three types of
guidance distinguished in the present study: unguided, technical
guidance, and human therapeutic guidance. In the subset of
unguided interventions, the average effect of digital interventions
compared with all control conditions and adjusted for baseline dif-
ferences was g = .34, 95% CI [.24, .45], p < .001; P =58,95% CI
[0, 100]; 62, < -001, 95% CI [.000, .052], 67, een = 025, 95%
CI [.000, .078]. For interventions with technical guidance, we
found an average effect of g = .46, 95% CI [.29, .62], p < .001;
P =88, 95% CI [46, 100]; 62,,,,< -001, 95% CI [.000, .024],
O2peen = 134, 95% CI [.070, .277] compared with all control
conditions. Using metaregression to compare therapeutic guidance
(TG) and unguided (UG) interventions yielded a nonsignificant
difference, B = .11, 95% CI [—.07, .28], p = .225. The effect of
guided interventions with human therapeutic guidance was g =
.63, 95% CI [.50, .76], p < .001; I = 82, 95% CI [48, 100];
62 min < -001, 95% CI [.000, .013], 67,,,0en = -155, 95% CI [.090,
.272]. Compared with unguided interventions, the incremental
effect gained by human therapeutic guidance was p = .22, 95% CI
[.03, .41], p = .024. For the corresponding forest plots see
Appendices [-K in the online supplemental materials.

We investigated the communication mode, qualification and du-
ration of guidance as moderators of the influence of therapeutic
guidance on outcomes. In the guided interventions therapeutic sup-
port was delivered synchronously in 10 instances and asynchro-
nously in 37 instances (and 20 mixed). Comparing studies with
synchronous versus asynchronous guidance, we did not find differ-
ences in ES between the two modes (f = .20, 95% CI [—3.66,
3.26], p = 659). A total of 65 comparisons at postassessment
included a human guided intervention. In 21 (32.3%) of these,
guidance was provided by highly qualified clinicians with either a
Masters-level degree in psychology, diploma in psychology, psy-
chotherapist (in training included) or psychiatrist qualification.
High qualification level compared with low did not impact the
effect of guidance on ES (f = .17, 95% CI [—12, .46], p = 254).
The average minutes of guidance in the human guided interven-
tions were M = 80.93 with a large standard deviation of SD =

38.44. Metaregression showed no time and guidance interaction
(B=-.00,95% CI[—.01,.01], p = .316).

Lastly, we investigated whether guidance impacted the long-
term ES of digital interventions across all control conditions in a
one-year period. Although the ES for guided interventions was
significantly higher compared with unguided (f = .25, 95% CI
[.05, .45], p = .018), a significant interaction between guidance
and assessment time showed that the decrease in ES over time was
greater in guided interventions (f = —.02, 95% CI [—.04, —.00],
p=.039).

Are Digital Interventions Effective ‘Beyond the Lab’ in
Routine Care Settings?

Of the included k = 83 studies, only k = 21 (25.30%) studies
reported on the ES of digital interventions on depression in effec-
tiveness settings. The ES of digital interventions versus all control
conditions in these effectiveness studies was g = .30, 95% CI [.15,
45], p < .001; PP = 85, 95% CI [37, 100]; 62,,,,< -001, 95% CI
[.000, .022], 67,,,0en = -095, 95% CI [.042, .224] compared with
the ES in efficacy trials (g = .59, 95% CI [.50, .69], p < .001; P=
81,95% CI [50, 100]; 62,,,,,< -001, 95% CI [.000, .009], G2, 0n =
.115,95% CI[.072, .187]. Hence, the superiority of digital interven-
tions over combined active and passive control conditions was dem-
onstrated in both efficacy and effectiveness settings. However, the
ES was significantly lower in effectiveness trials compared with ef-
ficacy trails (B = —.30, 95% CI [—.11, —.48], p = .002) explaining
13.5% of the between-study variance. For the forest plots for effi-
cacy and effectiveness trials see Supplemental Appendices L and M
in the online supplemental materials.

As results indicated a significant difference in ES between
active and passive control conditions (with lower ES found for
active control conditions) and ES in effectiveness settings was
found to be significantly lower than in efficacy settings, we
included both variables in metaregression to investigate the ES of
digital interventions versus active control conditions in effective-
ness settings. The results showed an average ES (intercept) of
g=.22,95% CI [.09, .35], p = .002; I = 79, 95% CI [52, 100];
&2 umin < 001, 95% CI [.000, .005], 67,,,00n = -093, 95% CI [.062,
.143] for digital interventions compared with active control condi-
tions in effectiveness settings. The main effect of setting was =
21, 95% CI [.04, .39], p = .019, indicating higher ES for digital
interventions compared with active control conditions in efficacy
settings compared with effectiveness settings. When controlling for
the study setting the main effect of control type was nonsignificant
with B = .54, 95% CI [-.52, 1.60], p = .189. The interaction
between study setting and control type was also nonsignificant
(B=—-.27,95% CI [—1.21, .66], p = .445).

To provide further details on the different active control condi-
tions we ran subset analyses for each control type in effectiveness
settings. Treatment as usual control conditions were most often
used in effectiveness studies (n = 15), followed by attention con-
trol conditions (n = 5), wait-list control conditions (n = 4), and
face-to-face control conditions (n = 1). The subset of WLC condi-
tion showed the highest average effect g = .81, 95% CI [—111,
2.74], p = .161; F = 89, 95% CI [0, 100]; 62,,,, < -001, 95% CI
[.000, 5.28], 67yeen = -379, 95% CI [.000, 8.35], although non-
significant. TAU control condition yielded a significant effect
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favoring digital interventions g = .30, 95% CI [.19, .41], p < .001;
P =51, 95% CI [0, 100]; o2 < .001, 95% CI [.000, .034],

within

O een = -016,95% CI [.000, .061]. Interestingly, the comparison
of digital interventions vs. attention control conditions in effective-
ness settings showed a null finding of g = —.01, 95% CI [-.51,
A49], p = .939. In the only study comparing a digital intervention
against a face-to-face control condition in effectiveness settings,
the difference was nonsignificant, g = .01, 95% CI [—-.79, .76]
(Wagner et al., 2014).

Finally, we investigated whether the benefits of guidance found
in the combined efficacy and effectiveness settings persisted in the
subset of effectiveness settings. As before, we found a nonsignifi-
cant benefit for technical guidance (B = .13, 95% CI [—.11, .36],
p =.272) and a significant effect for human therapeutic guidance
(B=.37,95% CI[.19, .56], p < .001). For guided digital interven-
tions compared with combined control conditions the overall ES
was g = .73, 95% CI [.60, .85], p < .001). Testing for an interac-
tion effect between study setting (efficacy vs. effectiveness) and
guidance (UG vs GS) revealed a significant interaction (f§ = .10,
95% CI1[.03, .17], p = .014, suggesting that guidance may be espe-
cially important in effectiveness settings.

Other Factors Moderating Outcomes
Participant Characteristics

Metaregression analysis revealed that digital interventions were
equally effective in individuals with somatic comorbidities (f =
.05,95% CI [—.13, .23], p = .551). Similarly, gender (the percent-
age of women within a trial) had no impact on ES (B = .03, 95%
CI [-.06, .11], p = .517). ES was not influenced by z-standardized
age either (B = —.05, 95% CI [—.13, .24], p = .176). However, we
found only sparse evidence assessing the efficacy of digital inter-
ventions for children and adolescents (k = 4). A subset analysis on
these four studies yielded a nonsignificant effect of digital inter-
ventions (g = .15, 95% CI [—1.34, 1.63], p = .708; I> = 94, 95% CI
[0, 100]; vairhin fixed to zero, Gienmn = .299, 95% CI [.045,
5.734]. Refer to Appendix N and O in the online supplemental
materials for the forest plots. Baseline depression severity signifi-
cantly influenced ES (z-standardized: = .12, 95% CI [.04, .20],
p =.005; in PHQ: B =.04, 95% CI [.01, .07], p = .005), indicating
individuals with higher depression symptom severity benefit more
from digital interventions that individuals with lower baseline
symptom severity.

Compliance

We operationalized intervention compliance in two ways: (a)
the percentage of completers and (b) the average completion of
modules in percentage. A total of 55 data points from 49 studies
contained information on the percentage of completers, whereas
there were 40 data points from 36 studies on the average comple-
tion of modules. The intercept-only model yielded an average
completer rate of 53.49%, 95% CI [44.62%, 62.368%], p < .001;
P =65, 95% CI [0, 100]; c2,,. < .001, 95% CI [.000, .052],
G%wween =.046, 95% CI [.000, .085] and an average module com-
pletion rate of 67.85%, 95% CI [59.00%, 76.07%], p < .001; I’ =
52,95% CI [0, 100]; 62, <.001,95% CI [.000, .049], 67, .c0n =

.026, 95% CI [.000, .059].

To quantify the influence of compliance on ES, we first calcu-
lated the ES of digital interventions in these two subsets of com-
pleters and module completion. The overall ES of digital
interventions in the completer subset was g = .65, 95% CI [.53,
78], p < .001; I = 85, 95% CI [0, 100]; &2, = 026, 95% CI
[.000, .1901, 62,,,,,0n = -131, 95% CI [.000, .251] and in the module
completion subset g = .50, 95% CI [.37, .63], p < .001; P =81,
95% CI [0, 100]; 62,,,< -001, 95% CI [.000, .137], Orpeen =
.102, 95% CI [.000, .204]. Investigating the influence of compliance
on ES showed a strong influence in both subsets: the estimated
increase in ES if all participants were completers was estimated at
B =.57,95% CI [.04, 1.10], p = .037, and the estimated increase in
ES if, on average, 100% of the modules were completed was 3 =
.61, 95% CI [-.05, 1.26], p = .068.

Given this strong influence of compliance on effectiveness,
additional analyses were conducted to identify moderators of com-
pliance. The average module completion rate in unguided inter-
ventions was 53.67%, 95% CI [34.00%, 73.35%], p < .001,
60.90%, 95% CI [40.67%, 81.14%], p < .001 in interventions
with technical guidance and 76.31%, 95% CI [65.76%, 86.85%],
p < .001 in interventions with therapeutic guidance. A comparison
of module completion in guided vs. unguided interventions showed
a significant effect of B = 22.81%, 95% CI [5.18%, 40.43%], p =
.016, and a nonsignificant effect for technical guidance compared
with unguided interventions, 3 = 7.73%, 95% CI [15.26%, 30.72%],
p=.474.

Similar differences across guidance formats were found for the
percentage of completers. The percentage of completers was
38.11%, 95% CI1 [7.87%, 68.35%], p = .022 in unguided interven-
tions, 50.30%, 95% CI [26.68%, 73.91%], p = .001 in interven-
tions with technical guidance and 56.36%, 95% CI [47.95%,
64.76%], p < .001 in interventions with therapeutic guidance.
However, there was no significant difference in percentage of
completers when comparing guided interventions with unguided
interventions (f = 22.31%, 95% CI [—9.26%, 53.86%], p = .141)
and interventions with technical guidance versus unguided inter-
ventions (B =9.03%, 95% CI [18. 44%, 36.50%], p = .467).

We found a significant difference in intervention compliance
between efficacy and effectiveness settings. The percentage of com-
pleters in effectiveness settings was estimated at 25.22%, 95% CI
[10.95%, 39.48%], p = .004; I = 48, 95% CI [0, 82]; 62,,,,, = -027,
95% CI [.000, .0551, G2,,,00n < -001, 95% CI [.000, .046], which
was 35.67%, 95% CI [17.143%, 53.52%], p < .001 lower than in ef-
ficacy trials. The percentage of module completion in effectiveness
settings was estimated at 53.61%, 95% CI [41.70%, 65.53%], p <
.001; P =40, 95% CI [0, 100]; 62, < .001, 95% CI [.000, .042],

within
Orpmmeen = 018, 95% CI [.000, .048], which was 21.01%, 95% CI
[5.21%, 36.81%], p = .012, lower than in efficacy trials. Neither age
nor gender significantly influenced compliance (p > .05). Temporal
analyses found no significant change in treatment compliance (ei-
ther in terms of average percentage of completers or average per-

centage of modules completed) over the last two decades.
Publication Year

Last, we explored whether the ES of digital interventions
changed over time. Since there was only one study published in
the first decade (Selmi et al., 1990), we focused on the last two
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Figure 3
Funnel Plot to Assess for Publication Bias by Relating Effect
Sizes to Standard Errors
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decades of studies to avoid bias caused by Selmi et al., 1990. We
found no significant change in ES in the last 2 decades (p > .05).

Small Study Effects and Publication Bias

To investigate publication bias and small study effects, a funnel
plot of the post effect sizes included in the present study was cre-
ated (see Figure 3). The funnel plot clearly demonstrated an asym-
metrical distribution of published effect sizes: studies with larger

sample sizes (and thus lower standard error and higher precision)
tended to find lower effect sizes, indicating that smaller studies
finding low (or negative) ES may not have been published. This
visual finding was further corroborated by the Egger’s test: the
modified Egger’s regression model showed a significant effect of

Figure 4
Significance Funnel Plots for (A) All Studies, (B) Efficacy Studies,
and (C) Effectiveness Studies
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Table 5

Publication Bias-Corrected ES Based on Increased Likelihood of Affirmative Results (1))

All studies Efficacy studies Effectiveness studies

Assumed m ES 95% CI ES 95% CI ES 95% CI
1 (no publication bias) 0.53 [0.44, 0.62] 0.60 [0.49, 0.70] 0.30 [0.13, 0.48]
2 0.42 [0.33, 0.52] 0.50 [0.39, 0.62] 0.22 [0.07, 0.36]
3 0.37 [0.28, 0.46] 0.45 [0.33, 0.56] 0.18 [0.05, 0.30]
4 0.33 [0.24,0.41] 0.41 [0.29, 0.52] 0.15 [0.04, 0.27]
5 0.30 [0.22, 0.38] 0.38 [0.27, 0.48] 0.14 [0.03, 0.25]
10 0.23 [0.16, 0.30] 0.30 [0.20, 0.40] 0.10 [0.01, 0.20]
15 0.21 [0.14, 0.27] 0.27 [0.18, 0.36] 0.09 [—0.00, 0.18]
20 0.19 [0.13, 0.26] 0.25 [0.16, 0.34] 0.08 [—0.01, 0.18]
30 0.18 [0.11,0.24] 0.23 [0.13, 0.32] 0.08 [—0.02, 0.17]
50 0.16 [0.10, 0.23] 0.22 [0.13,0.31] 0.07 [—0.02, 0.16]
Note. m =indicates the extent to which affirmative findings are more likely to be published; ES = effect size.

precision (f = —.29, 95% CI [-.07, —.51], p = .016). However,
because effectiveness studies tend to have higher sample sizes, we
tested efficacy and effectiveness studies separately. Interestingly,
Egger’s test was only significant in the efficacy studies subset (f =
—.31,95% CI [—.57, —.05], p = .029) and not in the effectiveness
studies subset (f = —.12, 95% CI [—.47, .22], p = .272), indicating
that bias may only be present in studies conducted in efficacy set-
tings, but not those conducted in effectiveness studies. In addition
to the influence of small study effects, we also investigated the dif-
ferences between affirmative (k = 79) and nonaffirmative (k = 42)
studies to detect potential publication bias. The significance funnel
plot highlighted a substantial difference between ES across all
studies (g = .52, 95% CI [.43, .60], p < .001) and the ES across
only the nonaffirmative studies (g = .12, 95% CI [.06, .19], p <
.001), indicating a possible influence of publication bias on the
current findings (see Figure 4). However, affirmative studies
would have needed to be 4.1-fold more likely to be published to
move the lower CI of the ES below a clinically relevant effect of
g = .24 (Cuijjpers, Turner, et al., 2014), 9.25-fold more likely to
move the ES itself to this threshold, and 23.8-fold more likely to
move the lower CI to the “worst-case” ES of g = .12 (see ES of
nonaffirmative studies). In a recent benchmark analysis (Mathur &
VanderWeele, 2020), the empirical increased likelihood for af-
firmative results () based on 58 meta-analyses was estimated at
m = 1.17 (.93 to 1.47) and the 95th quantiles of the distribution of
the true m was estimated to be 3.51. Given these approximated
benchmarks and that a = 4.1 would have been needed to move
the lower confidence interval and m = 9.25 to move the ES itself
below clinical relevance in the present analysis, we conclude that
the ES of digital interventions is likely to be clinically relevant, de-
spite the present publication bias. For publication bias-corrected
ES for different assumed r) see Table 5.

Discussion

The Efficacy of Digital Interventions

The current study is the largest and most comprehensive meta-anal-
ysis conducted to-date assessing the efficacy of digital interventions
for the treatment of depression across both active and inactive control
conditions and in both efficacy and effectiveness settings. Overall,
across 83 studies and 15,530 participants, we found a medium pooled

effect size superiority of digital interventions across all control condi-
tions (g = .52) with benefits sustained at follow-up.

An interesting point of comparison for our findings on digital inter-
ventions are effect sizes found in meta-analyses of face-to-face psycho-
therapy. In the largest and most-recent meta-analysis of psychotherapy
for depression, Cuijpers et al. (2020) identified an overall effect size of
g = .75 for face-to-face therapy compared with all control conditions
(in contrast to g = .52 found for digital interventions in the current
study), g = .91 when face-to-face psychotherapy was compared with
waitlist control conditions (in contrast to g = .70 for digital interven-
tions found in the current study) and g = .61 when face-to-face psycho-
therapy was compared with TAU (in contrast to g = .31 for digital
interventions found in the current study).

The current review identified only three studies that directly
compared digital interventions with face-to-face therapy. We
found no significant difference in outcomes between the two con-
ditions, supporting findings from Carlbring et al. (2018). However,
unlike the study by Carlbring and colleagues, which mixed indi-
vidual and group-based psychotherapy, our analysis was limited to
individual therapy alone. It is important to note that these were
highly controlled trials across multiple conditions and with low
sample sizes, the majority of whom were self-referred. Moreover,
participants needed to consent to both possible assignments of
Internet or on-site care, likely leading to a highly selective sub-
sample of depressed participants in need of mental health care.
Based on these findings, and the notable lack of high-quality stud-
ies providing direct comparisons, we believe it is premature to
conclude that digital interventions are as equally effective as face-
to-face psychotherapy for the treatment of depression and mark
this out as a critical area for future research.

The effect sizes found in the current meta-analysis varied
greatly with respect to different forms of interventions (with larger
effect sizes in interventions with a human support component),
degree of standardization (with larger effect sizes in highly con-
trolled efficacy studies), and populations (with insufficient evi-
dence of efficacy for children and adolescents). While digitization
has become a central concept in health policy worldwide to over-
come existing gaps in the provision of mental health care (U.S.
Food & Drug Administration., 2020; World Health Organization,
2020), the results of this meta-analysis suggest that the evidence
should be evaluated carefully for individual interventions and
within individual settings.
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Finally, despite the comprehensive search strategy used in the
current review, we found no studies that directly compared digital
interventions with pharmacotherapy. Given the large body of
research comparing psychotherapy with medication for the treat-
ment of depression, we believe that such comparisons are critical if
digital interventions are to be considered as part of the care pathway
in clinical settings. In line with this, we would also benefit from an
understanding of how outcomes evolve over time between the dif-
ferent treatment modalities. Similar to the evidence suggesting that
psychotherapy may be more effective in the long-term than antide-
pressant medication for mild-to-moderate depression (Karyotaki et
al., 2016), a better understanding of where digital interventions fit
into this picture is an important area for future research in the field.

The Role of Human Support

In contrast to recent studies suggesting that the addition of
human support may have no influence on outcomes in digital inter-
ventions (Shim et al., 2017), the current meta-analysis found that
interventions with therapeutic guidance had a higher overall effect
size (g = .63) than interventions with technical guidance
(g = .46) and led to significantly better outcomes than unguided
interventions (g = .34). Our results corroborate the findings by
Richards and Richardson (2012), though the current meta-analysis
included a substantially larger number of trials (83 vs. 24 RCTs)
from almost a decade more of research.

The increased effect size found in guided interventions may be
explained by the increase in treatment compliance. According to
the Supportive Accountability model (Mohr et al., 2011), human
support increases compliance with an intervention due to account-
ability to a coach who is seen as trustworthy, benevolent and hav-
ing expertise. Indeed, in our analysis we found a significant
influence of guidance on treatment compliance. On average, across
all studies, participants completed 67.9% of the intervention. Yet,
participants who received therapeutic guidance completed on aver-
age 76.3% of the intervention. In contrast, those who received
technical guidance completed an average of 60.9% and partici-
pants who received no human support only completed an average
of 53.7% of the intervention.

Treatment compliance is a key factor in moderating outcomes in
psychotherapy (Hansen et al., 2006). The current study found a strong
dose—response relationship between the number of modules completed
and outcomes. Importantly, we found that completing the full interven-
tion had the largest influence on reducing depressive symptoms of any
moderator variable in our model (B =.501). Yet, despite this, on aver-
age, only 53.5% of participants completed the full intervention across
studies. Such findings stand in stark contrast with a meta-analysis of
face-to-face therapy where the average percentage of completers was
84.7% (van Ballegooijen et al., 2014).

The higher effect sizes found in studies providing therapeutic
guidance compared with technical guidance suggests that the role
of human support in digital interventions may extend beyond sim-
ply facilitating compliance. As in face-to-face therapy (Henry et
al., 1990; Norcross, 2010), several therapist behaviors have been
associated with positive outcomes in digital interventions. For
instance, Holldndare et al. (2016), revealed that interpreting and
normalizing patient interactions with the intervention (affirming),
praising past and planned behaviors (encouraging), and mention-
ing personal examples from their own lives (self-disclosure) were

all shown to significantly influence treatment outcomes in Inter-
net-based CBT.

Yet, despite the influence of guidance on outcomes, we found
no relationship between the amount of guidance provided and
effect size. We also found no relationship between the qualifica-
tion and profession of the person providing guidance on outcomes.
One explanation for this may be the highly standardized nature of
digital interventions. In contrast to face-to-face therapy, digital
interventions are largely designed as self-help treatments, where
the role of the therapist is to provide clarification and reinforce-
ment of preexisting therapeutic content (Ebert et al., 2018). As
such, the experience and expertise of a trained psychotherapist
may be less relevant for many individuals. Given the implications
these findings have on the implementation and scalability of digital
interventions in clinical settings, we would benefit from a deeper
understanding of the role of human guidance, in particular for
whom guidance is necessary and the optimal amount of guidance
needed to maximize outcomes.

Beyond the Lab: From Efficacy to Effectiveness

Whether the efficacy of digital interventions found in devel-
oper-led trials can be transferred into clinical settings is a critical
question if digital interventions are to be offered to patients as an
alternative to face-to-face therapy. In the current study, we found a
small-to-medium positive effect size (g = .30) for digital interven-
tions in effectiveness settings. Furthermore, we found that digital
interventions were significantly more effective than TAU in rou-
tine care settings (g = .30), answering an open research question
that has previously generated significant debate when posed at the
individual study level (Gilbody et al., 2015a, 2015b).

Nonetheless, we found that effect sizes were significantly lower
for effectiveness studies than in efficacy trials (g = .59). This may
be explained by the lower compliance found in effectiveness trials.
On average, participants in effectiveness studies completed 53.6%
of the intervention (compared with 74.6% in efficacy trials) and
only 25.2% of participants completed the full intervention (com-
pared with 60.9% in efficacy trials). The differences here may be
attributable to the different study participants in the two designs:
in efficacy trials, participants typically self-select, are more moti-
vated to comply with treatment, and often receive remuneration
for participation. In contrast, participants in effectiveness trials
may have more severe or complex conditions and may also be
unwilling to accept psychological therapy without face-to-face
contact (Knowles et al., 2015).

Overall, our findings from effectiveness studies suggest that dig-
ital interventions may have a valuable role to play as part of the
treatment offering in routine care, especially when accompanied
by some sort of human guidance. A small but growing number of
pragmatic trials of digital interventions in clinical settings provide
further evidence of this (Titov et al., 2018). The U.K.’s Improving
Access to Psychological Therapies (IAPT) program is one suc-
cessful case in point, treating more than 500,000 people each year
within the public health care system (Clark, 2018). As part of a
“stepped care” offering, IAPT first offers digital interventions to
individuals with mild-to-moderate depression and/or anxiety (low-
intensity interventions) and face-to-face therapy (high-intensity
interventions) to those with more severe or complex symptomatol-
ogy. With regular outcome monitoring (after every session), care
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pathways can then be updated during treatment to improve overall
outcomes. In this way, evidence-based treatment can be scaled to
match individual needs as well as optimize service capacity. At
the same time, unguided self-help interventions may have a valua-
ble role to play as an alternative to ‘watchful waiting’ in mild
depression (Cuijpers, Quero, Dowrick, et al., 2019; Karyotaki et
al., 2021) or in the prevention of major depression for those with
subthreshold depression (van Zoonen et al., 2014).

For digital interventions to really scale to meet the needs of
large populations, a number of challenges still need to be addr
-essed, however. Among these are concerns over the perceived
lack of clinical effectiveness of digital interventions, the signifi-
cantly higher preference for face-to-face or blended therapy and
the belief that current care systems are not setup to properly inte-
grate digital modalities (Topooco et al., 2017). The evidence base
for digital interventions in low-income settings and diverse cul-
tures is also woefully lacking. In the current analysis, we found
only three studies conducted in Asia, one study conducted in South
America and no studies in Africa. Depression is a global public
health problem with similar prevalence rates between low-income
and high-income countries, yet a significantly lower proportion of
people in low-income countries currently receive care due to lack
of funding and trained health care providers (Cuijpers, Quero,
Dowrick, et al., 2019).

Other Factors Moderating Outcomes

The current meta-analysis investigated the influence of a num-
ber of participant characteristics on outcomes, including gender,
age, somatic comorbidity and baseline depression severity. In line
with previous studies (Cuijpers et al., 2014; Donker, Batterham, et
al., 2013), we found no significant difference in outcomes between
males and females. Regarding age, we found a significantly lower
effect size for children and adolescents than for adults (g = .15 vs.
g =.53). The average effect size found in the current analysis was
lower than has been found in prior meta-analyses on digital inter-
ventions for depression in youth (Ebert et al., 2015; Garrido et al.,
2019). However, these meta-analyses have also included young
adults (most often up to the age of 25 years), which may have
obscured the “real” effect sizes for children and adolescents.
Indeed, as recent meta-analyses have demonstrated, there is a clear
tendency for effect sizes of psychotherapeutic interventions to be
substantially lower in younger children with depression, whether
delivered face-to-face (Cuijpers, et al., 2020a) or by digital means
(Domhardt et al., 2020). Notwithstanding the above, we found
only four studies targeting children and adolescents (Gladstone et
al., 2018; Ip et al., 2016; Smith et al., 2015; Wright et al., 2017).
Given the growing prevalence of childhood and adolescent depres-
sion (Mojtabai et al., 2016), the field would benefit from further
research on digital interventions targeting these age groups with a
specific focus on what factors may lead to improved outcomes
(Domhardt, Schroder, et al., 2021).

We found no difference in the effectiveness of digital interven-
tions in patients with comorbid somatic conditions compared with
those without, reflecting what has been found for psychotherapies
in general (Cuijpers et al., 2018). This is promising given the
increased prevalence of depressive symptoms in patients with
chronic medical conditions and the manifold negative consequen-
ces of physical and mental comorbidity (Anderson et al., 2001;

Egede & Ellis, 2010). Furthermore, as antidepressant treatment
may bring the possibility of adverse drug interactions creating re-
luctance in patients and physicians to initiate new pharmacological
treatment (Boele et al., 2018), our findings suggest that digital
interventions may offer a promising alternative for patients experi-
encing comorbid depressive symptoms that may help overcome
the separation of physical and mental health care (Narasimhan
et al., 2019; Shrank et al., 2019).

Whether digital interventions are suitable for individuals of all
levels of depression also has substantial clinical implications. De-
spite the fact that the majority of trials involving digital interven-
tions exclude participants with severe levels of depression and
most clinical guidelines do not recommend Internet-based therapy
as a first-line treatment for individuals with severe depression
(NICE, 2017; “Practice Guideline for the Treatment of Patients
with Major Depressive Disorder (Revision), American Psychiatric
Association,” 2000), we found a greater effect size for participants
with higher pretreatment depression severity than those with lower
baseline symptom scores. Similar findings have been reported
elsewhere (Karyotaki, Ebert, et al., 2018; Williams & Andrews,
2013) and may simply reflect the fact that these participants have
greater room for improvement. However, it is worth noting that
only 1% of studies in the present analysis involved participants
with severe levels of depression. Furthermore, more important
than efficacy may be the question of whether digital interventions
are safe for patients with severe mental disorders. Although two
IPD meta-analyses have highlighted a low risk of deterioration of
Internet-based interventions when compared with waitlist and
TAU control conditions (Ebert et al., 2016; Karyotaki, Kemmeren,
et al., 2018), we do not yet know whether Internet-based interven-
tions are as safe as on-site treatment with regard to serious adverse
events such as need for hospitalization and, particularly, suicide
that occur relatively often in patients with severe depression
(Sander, Gerhardinger, et al., 2020).

Finally, the current study assessed whether smartphone-based
interventions are effective in the treatment of depressive symp-
toms. Here, we found an overall effect size of g = .40 compared
with all control conditions, which was not significantly different to
outcomes for computer- or Internet-based interventions, suggest-
ing smartphone apps may be a viable modality for the treatment of
depression in individuals with mild-to-moderate symptoms of
depression. Although our results appear similar to those found in
other meta-analyses on smartphone apps for mental health (Firth,
Torous, Nicholas, Carney, Rosenbaum, et al., 2017; Weisel et al.,
2019), it must be considered that only one trial in our analysis
demonstrated the efficacy of an intervention that could be accessed
only on a smartphone (Guo et al., 2020). Furthermore, we found
only four RCTs of smartphone-based interventions that met our
inclusion criteria, echoing the concerns from a number of
researchers on the dearth of evidence and high dropout rates in tri-
als conducted for smartphone-apps targeting depressive symptoms
(Baumel et al., 2019; Larsen et al., 2019; Torous, Lipschitz, et al.,
2020). Smartphone-based apps may offer a number of potential
advantages over computer-based interventions, most notably their
ability to gather data and deliver interventions in real-time and in
situ (Torous et al., 2019). Given their rapid adoption worldwide,
they may also be particularly well-suited to providing large scale
self-help preventative interventions and treatment for individuals
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with subclinical depression. We thus highlight this as a promising
area for future research.

Strengths

To the best of our knowledge, this meta-analysis is the first to
directly compare effect sizes across control conditions in effective-
ness settings, allowing us to answer the question as to whether dig-
ital interventions lead to superior outcomes when compared with
the usual care provided in routine health care settings. Unlike
many of the existing meta-analyses of digital interventions for
depression that have been limited to studies involving adult popu-
lations (aged 18-65), only one therapeutic approach (typically
CBT), or one treatment modality (e.g., smartphones), our analysis
included participants of all ages and therapeutic approaches and
across all treatment modalities, allowing us to comment on impor-
tant differences in outcomes related to these factors. Finally, using
a multilevel metaregression model in our analysis, we were able to
include outcomes from multiple measures and time points
included in a study providing a more accurate analysis of out-
comes and additional insight into potential changes in effect size
over time.

Limitations

Several limitations of the current meta-analysis should be con-
sidered. First, we observed substantial heterogeneity (I° = 84%).
However, with the predictors “control type” (active vs. passive)
and “study setting” (effectiveness vs. efficacy) we identified two
major sources of between-study variance explaining 22.4% and
13.5% of the between-study variance, respectively.

Second, our search strategy was limited to published peer-
reviewed studies and thus excluded gray literature. As studies with
negative or inconclusive results are less likely to be published this
may have led to an overestimation of effect sizes (Rothstein et al.,
2005). Although the influence of including gray literature on
pooled ES estimates may be less than expected (Schmucker et al.,
2017), our analyses did reveal significant small study effects, sug-
gesting an influence of publication bias on the current findings.
Such bias may also account for a proportion of the difference in
effect sizes between efficacy and effectiveness trials, where effi-
cacy trials appeared to have publication bias and effectiveness tri-
als did not. Notwithstanding, even with an assumed increased
likelihood of up to 4-fold the number of affirmative studies being
published over nonaffirmative studies, our findings indicate a clini-
cally relevant ES (g > .24, 95% CI) for digital interventions ver-
sus combined control conditions.

Third, 95% of included studies were conducted across Europe,
Australasia, and the United States; we only found one study pub-
lished in the last 30 years conducted in South America and none in
Africa, limiting the generalizability of our findings to these conti-
nents where populations and health care systems may differ
considerably.

Fourth, the operationalization of control conditions (e.g., WLC
and TAU) may have differed between studies, causing ‘methodo-
logical heterogeneity’ when pooling effect sizes. As previous
research has demonstrated that control conditions may vary across
settings and between countries (Cuijpers, Quero, Papola et al.,
2019), caution should be exercised when interpreting these results.

Fifth, we based our classification of self-guided/unguided, and
guided interventions with either therapeutic or technical support
on the a priori intervention design and operationalization stated in
the publications of the primary studies. However, the actual imple-
mentation and uptake of guidance during the process of carrying
out of each study might have differed to what was intended. Thus,
to fully understand the impact of the actual implementation of
guidance, precise and detailed information on the actual sup-
port delivered and the specific uptake from patients would be
necessary.

Finally, it is important to note that our analysis was carried out
at the study level, (i.e., using aggregate data from groups), thereby
preventing us from making causal inferences about the role of the
included moderators. This is particularly relevant for patient level
moderators where our results should be interpreted with caution
due to possible power limitations. Meta-analyses based on individ-
ual participant data (IPDMA) are a more appropriate method to
identify moderators in patient characteristics compared with meta-
regression as they enable the standardization of analyses across
studies (thereby minimizing heterogeneity) and provide greater
statistical power to identify potential moderators (Cooper & Patall,
2009; Furukawa et al., 2021; Karyotaki et al., 2021). Furthermore,
IPDMA offer several other advantages like the possibility to
account for missing data at the individual level, allow for the veri-
fication of the original study publication information with the
actual data sets and facilitate the inclusion of study participants
who were initially excluded in the analyses of primary studies
(Riley et al., 2010). To facilitate the IPDMA approach, it is also of
paramount importance that future research collects and reports on
common outcome measures and fine-grained data related to patient
characteristics, especially on groups for whom digital interven-
tions may hold significant potential to reduce existing gaps in care
(for example, low-income clients, clients living in rural areas, or
ethnic minority clients (Mohr et al., 2014; Muiioz et al., 2018).
The recommendations provided by the International Consortium
for Health Outcomes Measurement (ICHOM) offer a promising
framework here. The ICHOM proposes a standard set of outcome
measures for anxiety and depression relevant across countries and
cultures (Obbarius et al., 2017). These measures include demo-
graphic factors related to age, sex, gender identity, socioeconomic
status, ethnicity, marginalized group status and living situation
(Krause et al., 2021; Obbarius et al., 2017). With such standards in
place, researchers and policymakers will be better positioned to
compare the effectiveness of different care systems and models of
care at the same time as having greater transparency into the qual-
ity of care across different populations and intervention settings.

Future Directions

Despite the demonstrated efficacy and effectiveness of digital
interventions, we would like to emphasize that the effect sizes
found were modest, especially outside of highly controlled set-
tings. Moreover, similar to findings in face-to-face psychotherapy
(Cristea et al., 2017; Johnsen & Friborg, 2015), our moderator
analyses revealed that there has been no increase in effect size for
digital interventions over the past 2 decades. For this to change in
the decades that follow, we mark out three areas in particular for
future research: (a) addressing the problem of compliance in digi-
tal interventions; (b) leveraging digital interventions for a deeper
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understanding of how therapy works; and (c) the development of
personalized models of depression and tailored interventions in
precision medicine.

Putting the “Science of Attrition” Back on the Agenda

One of the key findings in our review was the high levels of
noncompliance found in digital interventions, especially in clinical
settings and in unguided interventions. It has long been known
that compliance is a challenge in digital interventions (Christensen
et al., 2009; Donkin et al., 2011; Eysenbach, 2005)—and indeed
compliance was the largest predictor of outcomes in our analysis
—yet, we found no difference in average compliance in the past
20 years. Given the significant role that compliance plays in medi-
ating outcomes, we highlight this as a critical area for future
research, echoing the need for what has been referred to as a “sci-
ence of attrition” (Eysenbach, 2005).

Three areas of research hold promise here. First, the role of
guidance. It is now well established that compliance in guided
interventions is significantly higher than in unguided interventions.
However, less is known as to why guided interventions lead to
increased compliance and what the optimal amount (frequency
and duration), type of focus (therapeutic vs. technical), and deliv-
ery channels (e.g., telephone, emails) might be. We would also
benefit from a deeper understanding of which patients may be best
suited to unguided interventions and who may need human support
or face-to-face therapy as well as the mechanisms operating here
and how they may be influenced. One promising approach here
are network meta-analyses (NMAs) using individual participant
data (IPD; Furukawa et al., 2021; Karyotaki et al., 2021). Unlike
RCTs, which are typically underpowered to answer questions
related to ‘what works best for whom’, IPD NMAs can combine
multiple comparisons in a single analysis, using both direct and
indirect evidence (Mavridis et al., 2015). As such, they have
greater statistical power when examining patient level characteris-
tics that may moderate outcomes across different interventions.

Second, patients may also develop an alliance with the program
itself, not just the guiding therapist, which has implications for inter-
vention design (Berger, 2017). For example, interventions that are
personalized to individuals based on their presenting symptoms or
previous interactions with the program may better reflect the element
of responsiveness in therapeutic alliance known to influence out-
comes (Kramer & Stiles, 2015; Stiles et al., 1998). Several studies
have already demonstrated the role of persuasive design elements (e.
g., design and content personalization; Baumeister et al., 2019; Keld-
ers et al., 2012, 2015) and automated communications (e.g., email,
text messages or chatbots; Bendig et al., 2019; Kelders et al., 2015;
Titov et al., 2013) on increasing compliance. As technological capa-
bilities develop and new modalities evolve, we would benefit from
further research into design factors influencing compliance, espe-
cially in unguided interventions where compliance outside controlled
settings is typically very low and thus the onus of maintaining patient
engagement weighs more heavily on the intervention itself (Baumel
et al., 2019).

Third, as the old adage goes “if you cannot measure it, you cannot
manage it.” In our review, only 36 of 83 studies (43%) provided meas-
ures of average treatment compliance and definitions of compliance
varied widely. Some studies operationalized compliance as the average
number of modules completed, while others defined it as proportion of

participants completing the full intervention or a certain percentage of
it. To complicate things further, module completion may only reflect
one aspect of compliance. For example, frequency of logins, time
spent interacting with the intervention and homework completion are
all aspects of engagement that may influence outcomes but are not
captured by module completion alone (Donkin et al., 2011; Enrique et
al., 2019). Indeed, research has shown that effective usage patterns
may vary between individuals (Sieverink et al., 2017) and that some
individuals may not need to complete the full intervention to benefit
from it (Christensen & Mackinnon, 2006). Future research may thus
benefit from moving away from blunt instruments that reduce compli-
ance to single dimensions and binary measures, toward more sophisti-
cated, composite measures that better reflect the complexity of the way
humans interact with digital applications. For example, a recent study
employing machine learning models across a number of different inter-
action types was able to identify different subtypes of user engagement
that predicted outcomes early on in the intervention (Chien et al.,
2020). These insights may then be used to tailor interventions during
treatment to maximize outcomes.

The Development of Mechanistically Driven Interventions

Even when participants do fully comply with the intervention, a
significant proportion will still fail to experience any meaningful
decrease in symptoms of depression (Andrews et al., 2000, 2004).
To address this so-called “quality gap” it is time for us to move
beyond a research agenda that has been predominantly focused on
demonstrating that therapies work to one focused on understand-
ing how therapies work (Cuijpers, 2016b). The majority of studies
have compared outcomes between two groups of individuals in
different conditions and proposed mechanisms of change based on
the underlying differences found (Cuijpers, Reijnders, et al., 2019;
Holmes et al., 2018). However, these types of studies are limited
in their explanatory power as they can only provide correlational
evidence for the purported mechanisms, not causal. To understand
the causal mechanisms underlying change in psychotherapy, we
need new experimental designs aimed at identifying the interven-
tion components and mediators that make up the active ingredients
of psychotherapy (Dombhardt, Steubl, et al., 2021). Mediators can
be seen as a way to operationalize, and thus reveal, potential
mechanisms: the actual steps or processes through which therapy
unfolds and produces the change (Kazdin, 2007). Understanding
the mediators and mechanisms underlying change in psychother-
apy is critical if we want to develop treatment strategies that
directly target these mechanisms and remove redundant strategies
(Furukawa et al., 2021; Holmes et al., 2018).

Digital interventions could provide researchers with a powerful
experimental paradigm for the identification of mediators and
mechanisms of change that overcomes some of the challenges
with existing research on face-to-face therapies. First, the ability
to target large sample sizes with the same intervention enables
researchers to conduct trials that are sufficiently powered to detect
the small effect sizes likely in studies on individual components
and mediators of change (Domhardt, Steubl, et al., 2021). Second,
the potential to deliver highly standardized digital interventions
makes it easier to manipulate individual mediators while control-
ling for others (Dombhardt, Cuijpers, et al., 2021; Furukawa et al.,
2021). As such, it may limit the high levels of heterogeneity that
have plagued psychotherapy research for decades. Third, the
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ability to gather granular data relating to both the timing and
amount of interaction with specific components of an intervention
enable the temporal and gradient requirements of research on
mediators (Kazdin, 2007).

Personalized Interventions for the Treatment of
Depression

Digital interventions may also offer a unique platform to pro-
vide personalized treatment approaches that have simply not been
possible until now. For a long time, mental disorders have been
conceptualized using diagnostic categories, where disorders are
defined based on a set of symptoms purported to derive from the
disorder. However, mental disorders are more complex than this,
evolving on multiple levels of action, from molecules to cells and
circuits, to cognitions, emotions and behaviors, and interacting
with social and physical environmental factors (Huys et al., 2016).
As a result, there is a substantial degree of heterogeneity in symp-
toms between people diagnosed with the same disorder (Cramer et
al., 2010); calling into question the validity of traditional psychiat-
ric diagnoses (Maj et al., 2020).

The rapidly evolving field of computational psychiatry may provide
novel methodological and epistemological approaches to address the
limitations of the categorical nosology and lead to new insights for the
personalization of treatments (Huys et al., 2016). Computational psy-
chiatry integrates multiple levels and types of computation with multi-
ple types of data to enhance the etiology, prediction, and treatment of
mental disorders (Huys et al., 2021). As an increasing number of digi-
tal interventions are delivered via smartphones, they may constitute a
central catalyst for computational psychiatry and provide an important
role in capturing several units of analysis that have been extremely dif-
ficult to capture until now, most notably the behavioral, physiological,
and self-report dimensions (Torous et al., 2017). For example, with the
passive collection of smartphone sensor data, such as GPS for location
tracking, microphone for vocal markers, and text and call logs for iden-
tifying social interactions, smartphones can capture a plethora of data
related to an individual’s behavioral patterns. Combined with physio-
logical data from wearable devices, (e.g., sleep duration or heart rate
variation (HRV) as a measure of stress), we can derive “digital pheno-
types” (Montag et al., 2020; Onnela & Rauch, 2016) to aid the under-
standing of the causal factors in depression at both the inter- and
intraindividual level. Such high-resolution and large-scale data can
then be analyzed by advanced computational approaches. Although
the research field is still nascent here, studies have already demon-
strated relationships between GPS, HRYV, calls and SMS logs, micro-
phone and app usage, and depressive symptoms across clinical and
nonclinical populations (Moshe et al., 2021; Rohani et al., 2018; Saeb
et al., 2015, 2016). With access to moment-by-moment changes in an
individual’s psychological, behavioral, and physiological states, digital
interventions thus have the potential to evolve into real-time adaptive
interventions that can predict, prevent and treat disorders such as
depression with mechanistically driven interventions personalized to
the individual and delivered at the critical time to maximize outcomes.

Conclusions

The current meta-analysis provided evidence for the efficacy of
digital interventions for the treatment of depression for a variety of
populations. Furthermore, it demonstrated the superiority of digital

interventions compared with treatment-as-usual in clinical settings
when accompanied by human guidance. However, effect sizes are
modest and compliance with digital interventions outside of highly
controlled settings remains a significant challenge. For this to
change in the decades that follow, researchers will need to adopt a
research agenda focused on understanding how and for whom dig-
ital interventions work, rather than simply that they work, as well
as how to successfully disseminate digital interventions beyond
the lab in routine care settings.
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